快速幂 -- 算法详解

作为一名程序员,如果写幂运算还一个一乘就太low了,这样的算法的效率是o(n),我们有快速幂的算法,算法效率是o(logn),基本思想是如下:

任意整数可以被写成2进制的数,比如63 = 0x111111
所以当我们算2^63的时候可以写成:
2^63 = 2^1 + 2^2 + 2^4 +2^8 +….+2^32
这样,我们只需要5次就能把答案算出来

以下是快速幂的模板

long power(long m,long n){
        long res = 1;
        long temp = m;
        while(n!=0){
            if(n%2==1)//取出最右边的0或者1 如果是1就需要乘入到结果中
                res = res*temp;

            temp = temp*temp;

            n=n>>1;
        }
        return res;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值