大促转化率精准预估优化论文随笔记

该论文探讨了在大促期间由于用户行为变化导致的传统转化率预估模型失效的问题。提出了一种利用历史数据复用和微调策略来改善大促时期的转化率预测准确性,通过寻找与当前大促分布相似的历史数据进行模型校正。这种方法涉及构建大促时序向量并使用最近邻算法来检索相似的历史促销数据,以减少预估误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是一篇阿里妈妈的论文【KDD’23 | 转化率预估新思路:基于历史数据复用的大促转化率精准预估】
常规的销量预测,遇到一些特大事件,直播、大促,一般很难预估得准确。而且现在电商机制也比较多样,预售、平台折扣等。
本篇可能适合一些特殊时间点进行转化预测的场景。

论文地址:
https://arxiv.org/pdf/2305.12837.pdf

只在此摘录一些片段:

1 片段一:大促预估不足的原因

直接原因:大促周期内用户转化行为突变(五花八门的电商机制:预售、折扣等)

如图1 (a),我们可以观察到大促期间的真实CVR发生明显波动,其原因是用户的转化行为发生了剧烈变化。由于传统的CVR模型遵从i.i.d.假设(用于训练的数据与实际服务的数据独立同分布),当分布发生波动时,i.i.d.假设失效,模型的预估性能将会受到影响;

万“恶”之源–转化行为的延迟反馈(还是预售之类的机制引发的问题)

2 大促CVR修复策略

上述训练范式的有效性依赖于A(x,y)和B(x,y)之间的i.i.d.假设。然而该假设在大促周期内难以成立,因为转化行为的剧烈波动会带来严重的分布偏移(。在我们的智能数据复用方案中,我们首先寻找与即将到来的大促B(x,y)的分布相似的【历史数据】,并使用【历史数据】微调生产模型,过程如下式:
在这里插入图片描述
所以这里的Fineture(B) 是一个纠偏值。
整个方案会基于历史分布相似的数据进行融合,基于重要性加权经验风险最小化框架(Importance-Weighted Empirical Risk Minimization)设计了微调方案,通过最小化以下经验性风险来进行模型微调,同时纠正历史数据可能带来的偏差:
在这里插入图片描述
其中,B(x,y)代表历史数据对应当天前10小时的CVR均值,可以从历史数据中统计获得;而B‘(x,y)代表大促当天前10小时的真实CVR均值

3 大促期间 分布相似数据的搜寻

找到当下大促,相似的历史“促销”数据,包括双11,618,双12等等大促时间点
寻找的方式就是构建大促时序向量,然后求相似。
论文中大促时序向量的构成由两个部分:

  • 每天的CVR
  • 品类的产品(如化妆品)的曝光占比

上述的两类数值特征将会被拼接并平铺成向量,作为对应天的表征。为每一天都构建了对应表征后,我们使用最近邻算法来检索最相似的历史数据:计算当天表征与历史每一天表征之间的余弦距离并排序。

检索效果:
在表3中,我们提供了几个真实检索结果来更好地展现数据检索的效果。第一个是查找与99大促相似的促销。我们检索到的前两个日期是2022年8月8日的88大促,以及2022年6月14日的618大促二峰,CVR也都比较接近。第二个例子是寻找与88促销相似的促销。我们检索到的Top2结果是2022年7月12日的狂暑季大促,以及7月31日的七夕节大促(没有检索到99大促是因为88大促发生在99大促之前)。同时,我们还随机展示了一个低相似度的非大促日期。显然,这个随机日期的整体CVR与目标大促日期相差很大。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值