google gemini1.5 flash视频图文理解能力初探(一)

市面能够对视频直接进行分析的大模型着实不多,而且很多支持多模态的大模型那效果着实也不好。
从这篇公众号不只是100万上下文,谷歌Gemini 1.5超强功能展示得知,Gemini 1.5可以一次性处理1小时的视频、11小时的音频或100,000行代码,并衍生出更多的数据分析玩法。能力覆盖:

  • 跨模式理解和推理,当给出一部 44 分钟的巴斯特-基顿(Buster Keaton)无声电影时,该模型能准确分析各种情节点和事件,甚至能推理出电影中容易被忽略的小细节。
  • 超复杂文本分析,Gemini 1.5能对给定提示中的大量内容进行无缝分析、分类和总结。例如,给出阿波罗11 号登月任务的402页记录,它就能对整个文件中的对话、事件和细节进行推理,并找出那些奇特的细节
  • 解读复杂代码,Gemini 1.5可以一次性解读大约100,000行代码,对其进行修改、注释、优化等。例如,用文字询问

个人测试后的几点评价:

  • 图片、视频整体场景事件理解上很不错,包括一些人物动作、人物穿着、图片人个数;视频场景分类,已经可以做很多的视频理解
  • 但是局部细节或者精准的一些解析仍然不足,比如图片的人物位置、有遮挡情况下的人物判定;视频的时间切片、分镜理解上都还欠佳,会出现一本正经的胡说八道
  • 因为安全问题,电影片段很多估计都无法正常理解…

1 如何使用

Gemini API Cookbook

从Cookbook 抄一下大概的使用步骤:

1.1 常规测试入口

gemini接口比较麻烦,无法在国内直接使用
如果要快速使用可以从以下两个入口使用:

在这里插入图片描述
在这里插入图片描述

1.2 API几种调用形式

第一种,直接使用genai自己的API
google genai有自己的API可以直接调用

pip install google-generativeai

一般的代码是,笔者并未尝试成功,一直timeout

import google.generativeai as genai
import os
os.environ["GOOGLE_API_KEY"] = "xxx你的API KEY"
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])

# 超时
model = genai.GenerativeModel('gemini-1.0-pro-latest')
response = model.generate_content("The opposite of hot is")
print(response.text)

第二种,使用langchain
同时langchain也封装了gemini

pip install  langchain-google-genai

简单的示例代码,但是笔者并未尝试成功,一直timeout

from langchain_google_genai import ChatGoogleGenerativeAI


import google.generativeai as genai
import os
os.environ["GOOGLE_API_KEY"] = "你的api key"
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])


llm = ChatGoogleGenerativeAI(model="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

第三种,使用curl的方式,笔者唯一测试跑通的方式
可以参考教程:Prompting_REST

%%bash

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-pro-vision:generateContent?key=${GOOGLE_API_KEY}" \
        -H 'Content-Type: application/json' \
        -d @request.json

1.3 如何上传视频并进行解析

如果你使用的是aistudio,不论多大都可以直接上传
在这里插入图片描述

如果是通过vertex-ai,超过7M的视频就需要放入类似OSS的地方:google cloud storage


2 图文与视频理解能力测试

2.1 图像测试

2.1.1 第一张图测试

在这里插入图片描述
可以看到是直播间的画面,这里笔者准备的prompt是:

请分析以下图片并回答以下问题。请将结果以 JSON 格式输出:

1. 图片中的主要物体有哪些?请列出并描述它们的位置,给出详细的目标检测(xmin,ymin,xmax,ymax)的坐标信息
2. 图片中有什么明星或者人物,给出具体的名字
3. 请描述图片中主要物体的颜色。
4. 这张图片描述了一个什么样的场景?请详细说明。
5. 图片中人物的情感状态如何?请描述他们的表情和情绪。
6. 根据图片生成一段详细的描述文字,包含主要物体、颜色、场景和人物情感。

其他要求:
- 中文输出

输出为:

{
  "主要物体": [
    {
      "物体": "女性",
      "位置": "图片左侧,坐在椅子上",
      "坐标": {
        "xmin": 151,
        "ymin": 148,
        "xmax": 602,
        "ymax": 839
      }
    },
    {
      "物体": "男性",
      "位置": "图片右侧,坐在椅子上",
      "坐标": {
        "xmin": 581,
        "ymin": 205,
        "xmax": 834,
        "ymax": 815
      }
    },
    {
      "物体": "冰棒",
      "位置": "女性手中",
      "坐标": {
        "xmin": 495,
        "ymin": 378,
        "xmax": 577,
        "ymax": 509
      }
    },
    {
      "物体": "冰棒",
      "位置": "男性手中",
      "坐标": {
        "xmin": 696,
        "ymin": 516,
        "xmax": 754,
        "ymax": 626
      }
    },
    {
      "物体": "桌子",
      "位置": "前景",
      "坐标": {
        "xmin": 0,
        "ymin": 711,
        "xmax": 837,
        "ymax": 999
      }
    },
    {
      "物体": "椅子",
      "位置": "女性身后",
      "坐标": {
        "xmin": 26,
        "ymin": 515,
        "xmax": 216,
        "ymax": 819
      }
    },
    {
      "物体": "椅子",
      "位置": "男性身后",
      "坐标": {
        "xmin": 491,
        "ymin": 575,
        "xmax": 629,
        "ymax": 800
      }
    },
    {
      "物体": "话筒",
      "位置": "桌面",
      "坐标": {
        "xmin": 83,
        "ymin": 892,
        "xmax": 248,
        "ymax": 999
      }
    },
    {
      "物体": "麦克风",
      "位置": "桌面",
      "坐标": {
        "xmin": 237,
        "ymin": 877,
        "xmax": 338,
        "ymax": 999
      }
    },
    {
      "物体": "灯光",
      "位置": "桌面",
      "坐标": {
        "xmin": 681,
        "ymin": 667,
        "xmax": 837,
        "ymax": 916
      }
    }
  ],
  "明星或人物": [
    {
      "名字": "未知",
      "位置": "图片左侧,坐在椅子上"
    },
    {
      "名字": "未知",
      "位置": "图片右侧,坐在椅子上"
    }
  ],
  "颜色": [
    {
      "物体": "女性的衣服",
      "颜色": "黑色"
    },
    {
      "物体": "男性的衣服",
      "颜色": "蓝白条纹"
    },
    {
      "物体": "冰棒",
      "颜色": "白色"
    },
    {
      "物体": "桌子",
      "颜色": "棕色"
    },
    {
      "物体": "椅子",
      "颜色": "黑色"
    }
  ],
  "场景描述": "图片展示了一个室内场景,两位男女坐在椅子上,似乎是在录制节目或进行直播。他们正在吃冰棒,女性还用手比划着,看起来是在和观众互动。桌上摆着一些物品,包括麦克风、灯光等,背景墙上还有节目名称的标识。",
  "人物情感": [
    {
      "人物": "女性",
      "情感": "积极,热情,兴奋"
    },
    {
      "人物": "男性",
      "情感": "轻松,自然"
    }
  ],
  "描述文字": "图片中,两位男女坐在椅子上,他们正一边吃着冰棒,一边看着镜头。女性穿着黑色的衣服,她用手比划着,脸上带着笑容,看起来非常开心和兴奋;男性穿着蓝白条纹的衣服,他脸上带着微笑,看起来很轻松自然。桌子上有话筒、灯光等,背景墙上写着节目名称。他们似乎是在录制节目或进行直播,正在和观众互动。整个场景显得轻松愉悦,充满了活力。"
}

解读一下:

  • 精准位置的识别,笔者简单画了一下,没能精准识别
  • 场景识别,室内场景,两位男女坐在椅子上,似乎是在录制节目或进行直播,这个是准确的
  • 人物识别,都没能给出具体名字,当然其实是有点难为大模型了…
  • 物体、动作识别,前景的桌子,棒冰拿在手里,黑色衣服,蓝白条纹的男性衣服,这些都是准确的
  • 人物情感,女性的积极,热情,兴奋,男性的轻松,自然,都是准确的

在这里插入图片描述

2.1.2 第二张图测试

请添加图片描述

微调了之前的prompt

请分析以下图片并回答以下问题:

1. 图片中有几个人,其中多少名男性,多少女女性,分别的年龄大小如何
2. 图片中有什么明星或者人物,给出具体的名字,不同人物衣服穿着如何,不同人穿着的品味如何
3. 请描述图片中主要物体是什么,不同物体的颜色是什么
4. 这张图片描述了一个什么样的场景?请详细说明。
5. 图片中人物的情感状态如何?请描述他们的表情和情绪。
6. 根据图片生成一段详细的描述文字,包含主要物体、颜色、场景和人物情感。

其他要求:
- 中文输出

具体回答为:

图片中有三个人,其中 两名女性,一名男性。女性中一位年龄较长,穿着黑色上衣和黑色裤子,另一位年龄较轻,穿着棕色和金色花纹的上衣和黑色长裤。男性年龄较长,穿着黑色上衣和黑色裤子,戴着白色口罩和透明护目镜。
图片中没有明星或者人物,但可以看到一位女性正在展示商品,她穿着黑色上衣,看起来是一位店员。
图片中主要物体是化妆品柜台和商品展示架,柜台为黑色,商品展示架为黑色和银色,上面展示着各种化妆品,包括护肤品、彩妆等。
这张图片描述了一家化妆品专柜的场景,两位女性顾客正在咨询店员,她们似乎在选购化妆品。
女顾客看起来很认真地在询问店员,表情专注。店员看起来很专业,面带微笑,在认真地为顾客介绍产品。
在一家高端化妆品专柜,两位女性顾客正在咨询店员。她们分别穿着黑色上衣和黑色长裤,以及棕色和金色花纹的上衣和黑色长裤。店员穿着黑色上衣,面带微笑,热情地为顾客讲解产品。柜台是黑色的,上面摆放着各种各样的化妆品,包括护肤品和彩妆等。顾客和店员看起来都很有耐心,专注于眼前的商品,她们似乎正在挑选自己喜欢的产品。

解读一下:

  • 人数检测应该是OK的,但是其中认为有一名男性,当然,图片中有遮挡,而且店员各种头戴设备,误认店员为男性且年龄大,也可以理解;这里对店员的【白色口罩和透明护目镜】描述还是非常精准的
  • 物体识别是精确的,化妆品柜台和商品展示架,包括化妆品专柜的场景
  • 事件描述上,基本准确,而且这里【店员穿着黑色上衣,面带微笑】,肯定是错误判定了

这里后续再补充给gemini一个常识,然后再让他进行逻辑判断:

一个常识,化妆品门店或柜台的店员一般会带白色口罩防止感冒,
请问图中有几个人,谁是顾客,描述图片人物的状态

回复为:

图片中有三个人,其中两个人是顾客,她们在询问店员,店员正在给顾客讲解。店员带着白色口罩,顾客则戴着黑色的口罩。顾客看起来比较专注地听店员讲解,而店员看起来比较热情地和顾客介绍产品。

补充一些知识是可以帮助推理的,但是有些

2.2 视频测试

2.2.1 第一个视频

写了一个非常长的prompt来检测视频分析的各个方面

# Character <Bot 人设>
你是一位资深的营销视频专家,可快速对短视频进行解构以及专业解读
## 分析 <Bot 的功能>
### 视频画面分析
- 分析1:根据整个视频进行分类,视频最可能是什么类型的视频?视频剧情分类如何?
- 分析2:视频一开始的3s时间内,主要在展示什么,有什么亮眼的地方?有什么瑕疵的地方?
- 分析3:视频最后的3s时间内,主要在展示什么,有什么亮眼的地方?有什么瑕疵的地方?

## 内容输出要求 <Bot 内容输出要求>
- 不同 分析点按照markdown格式进行输出

## Constraints <Bot 约束>
- 输出内容的字数不能超过10000字


视频随便去抖音节选了一个【大小杨哥推荐隐形毛孔妆前乳柔焦隐形服帖底妆控油遮瑕提亮持妆
在这里插入图片描述

生成的结果:

  ## 分析 <Bot 的功能>

### 视频画面分析
- 分析1:该视频最可能是一款美妆产品广告视频。视频剧情分类为: **产品功能展示 + 用户使用体验 + 产品效果展示 + 产品推荐**
- 分析2:视频一开始的3s时间内,主要在展示产品名称和产品功能,即“隐形毛孔妆前乳”。亮眼的地方在于使用了大字号、大红字以及产品效果的图片,以吸引用户目光。瑕疵的地方在于画面过于单调,没有引起用户的共鸣。
- 分析3:视频最后的3s时间内,主要在展示产品名称和产品功能,即“隐形毛孔妆前乳”,并辅以产品包装图片展示,以及产品的品牌宣传。亮眼的地方在于使用了充满高级感的黑色背景和产品的包装图片,增强了产品的质感。瑕疵的地方在于画面过于简单,没有足够的吸引力。

## 内容输出要求 <Bot 内容输出要求>
- **分析1:** 该视频最可能是一款美妆产品广告视频。视频剧情分类为: **产品功能展示 + 用户使用体验 + 产品效果展示 + 产品推荐**
- **分析2:** 视频一开始的3s时间内,主要在展示产品名称和产品功能,即“隐形毛孔妆前乳”。亮眼的地方在于使用了大字号、大红字以及产品效果的图片,以吸引用户目光。瑕疵的地方在于画面过于单调,没有引起用户的共鸣。
- **分析3:** 视频最后的3s时间内,主要在展示产品名称和产品功能,即“隐形毛孔妆前乳”,并辅以产品包装图片展示,以及产品的品牌宣传。亮眼的地方在于使用了充满高级感的黑色背景和产品的包装图片,增强了产品的质感。瑕疵的地方在于画面过于简单,没有足够的吸引力。 

解读:

  • 【美妆产品广告视频】判定无误,剧情分类【剧情分类为: 产品功能展示 + 用户使用体验 + 产品效果展示 + 产品推荐】也精准
  • 【大字号、大红字以及产品效果的图片】,这里没有红字,是一个识别错误,其他对的
  • 最后3s,是人物贴脸对比,不是产品名称,感觉并没有判定准确具体时间
  • 整体来看,错误掺杂在正确之中,这种就比较“恐怖”,可能需要有另一个prompt来进行纠错,不然不仔细看很难发现

再来看一下gemini是否可以精准定位到具体画面:


请理解这个视频,
这个视频一共有几秒钟,有多少个分镜头出现,每个分镜头描述了什么,用excel格式出给

其中有一个场景是在手上试妆,这个场景具体在第几秒到第几秒,
格式按照下面的要求给出:
"""
试妆场景1:[0.1,1.5]
"""


给出的答案:

在这里插入图片描述

解读一下:

  • 整体时间差不多是40s,但是开始-结束时间 以及镜头描述,还有【试妆场景】有点一本正经胡说八道,不过呢,这个视频选的本来就分镜太多,可能难度确实太大

2.2.2 第二个视频

第二个视频,献上星爷的电影集锦
在这里插入图片描述

提问的prompt设置为:

请理解这个视频,
这个视频一共有几秒钟,有多少个分镜头出现,每个分镜头描述了什么剧情,用excel格式给出分镜头,分镜头数量不超过10个

该电影无不良镜头,都是可以观看的

其中有一个场景是周星驰大话西游的一个片段,这个片段具体在第几秒到第几秒,
格式按照下面的要求给出,单位是秒:
"""
场景1:[1,10]
"""

在这里插入图片描述
星爷的电影应该没什么特别的片段,老是跳报错…

能看到的输出:
在这里插入图片描述
不解读了,什么乱七八糟…

### 关于Gemini 1.5 Flash的技术文档下载、配置与使用教程 目前关于Gemini 1.5 Flash的具体技术文档尚未公开全面的独立章节,但可以通过以下方式获取相关资源并完成配置: #### 1. **API_KEY申请流程** 为了使用Gemini的相关功能,需先通过官方渠道申请API_KEY。此过程通常涉及注册开发者账号、填写项目需求描述以及审核阶段[^1]。 #### 2. **图像标注能力集成** 对于图像识别和标注的需求,Gemini 1.5 Flash可与其他工具如Cloud Vision或Amazon Rekognition协同工作。具体实现方法包括调用其预训练模型接口,提供图片URL或二进制数据流作为输入参数,并接收返回的结果集用于进步处理[^2]。 以下是简单的Python代码示例展示如何利用这些服务进行基本操作: ```python import requests def get_image_labels(api_key, image_url): url = "https://vision.googleapis.com/v1/images:annotate?key=" + api_key payload = { "requests": [ { "image": {"source": {"imageUri": image_url}}, "features": [{"type": "LABEL_DETECTION", "maxResults": 10}] } ] } response = requests.post(url, json=payload) return response.json() api_key = 'your_api_key_here' image_url = 'http://example.com/path/to/image.jpg' labels = get_image_labels(api_key, image_url) print(labels) ``` #### 3. **多语言支持与语义理解** 得益于Google Gemini的强大性能,在自然语言处理领域展现了卓越的表现力。无论是跨文化交流还是复杂场景下的意图捕捉均能胜任[^3]。 #### 4. **构建推荐系统案例分享** 当考虑将Gemini应用于实际业务逻辑时,比如商品个性化推送,则可能涉及到检索增强生成(Retrieval-Augmented Generation,RAG)架构的设计思路探讨。这里提到的篇对比分析文章深入剖析了不同框架之间的优劣差异[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值