07-图4 哈利·波特的考试

#include <stdio.h>

int Min(int a, int b);
int Max(int a, int b);

int main(int argc, char const *argv[])
{
	int N, M;
	scanf("%d %d", &N, &M);
	int graph[N+1][N+1];
	for (int i = 1; i <= N; i++){
		for (int j = 1; j <= N; j++){
			if (i == j)
				graph[i][j] = 0;
			else
				graph[i][j] = -1;
		}
	}
	int n1, n2, len;
	for (int i = 0; i < M; i++){
		scanf("%d %d %d", &n1, &n2, &len);
		graph[n1][n2] = graph[n2][n1] = len;
	}
        //Floyd算法
       for (int i = 1; i <= N; i++){
		for (int k = 1; k <= N; k++){
			if (graph[i][k] == -1)
				continue;
			for (int j = 1; j <= N; j++){
				if (graph[k][j] == -1)
					continue;
				if (graph[i][j] == -1)
					graph[i][j] = graph[j][i] = graph[i][k]+graph[k][j];
				else
					graph[i][j] = graph[j][i] = Min(graph[i][j], graph[i][k]+graph[k][j]);
			}
		}
	}
	int num = -1, lenth = 10000, tmp;
        //遍历多源最短路径的二维数组,找到每个点到其他点的最大路径的点,在这些点中取最小值
       for (int i = 1; i <= N; i++){
		tmp = 0;
		for (int j = 1; j <= N; j++){
			if (i == j)
				continue;
			if (graph[i][j] == -1)
				break;
			tmp = Max(tmp, graph[i][j]);
			if (tmp < lenth && j >= N){
				num = i;
				lenth = tmp;
			}
		}
	}
	if (num == -1)
		printf("0\n");
	else
		printf("%d %d\n", num, lenth);
	return 0;
}

int Min(int a, int b)
{
	if (a < b)
		return a;
	else
		return b;
}

int Max(int a, int b)
{
	if (a > b)
		return a;
	else
		return b;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值