机器学习中的概率模型和概率密度估计方法 及 VAE生成式模型详解(之二)

简介     非监督机器学习(Unsupervised Machine Learning)中的数据分布密度估计(Density Estimation)、样本采样(Sampling)与生成(Generation,或Synthesis,即合成)等几类任务具有重要的应用价值,这从近年来生成对抗网络(GA...

2018-06-17 16:23:15

阅读数 351

评论数 0

机器学习中的概率模型和概率密度估计方法 及 VAE生成式模型详解(之一)

生成式模型差分自编码器(VAE)具有非常大的理论意义和实用价值。但要彻底搞懂VAE的思想脉络,需要具有比较多的概率论、信息论、概率图模型和机器学习的知识。本文从与VAE有关的基本概念开始,包括概率的图模型,分布密度估计的两类方法,即采样法(MCMC)和优化法(EM和VB/VI),逐步深入,详细解读...

2018-06-17 16:13:01

阅读数 100

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭