面试(五)

1. 

     short char byte< int < long<double

 小的可以自动的 转换为 大的          switch(<int的类型)


  2.  String  的 是final修饰 不可 修改, 

 StringBuffer.append("nimade")----直接的拼接


3. 实现一个线程:

 继承+重写 thread   

 实现 + 实现

wait-----notify 等待----重新启动


4. ==  是内存里面的 值 + 基础类型

    eq --------对象的内容


5.垃圾回收 防止 内存泄漏,GC


6.一般异常: 定义方法 时抛出,IO FILE SQL


运行: nullpo arthi  arraryIn  classcast类转化        numberFor 格式化


7. & 与+ 按位与(非 boolean)

&& 短路功能


8. 数组有length属性

9. oop: 许多的代码模块,每个模块一个特定的功能,增加代码重用的几率,高内聚


10.接口可以 继承 接口,  抽象类可以实现接口,

             都不能实例化

            必须抽象               可以有非抽象的方法     

                                      抽象类似用来实现的 不能有 抽象的构造方法+ static方法


11. unicode 包含汉字  1汉字就是1字符=2字节=16位


12.构造器不能 继承, 不能重写

13.多线程:  说了的

 实现同步: 同步方法    同步代码块

sleep: 进入谁睡眠

notify: 唤醒一个等待状态的

wait: 让线程进入等待状态,


14        两个接口          collection   map

                       list (有序)  set(无序不重复)            hashMap  hashtable(安全)

arrL(不安全 效率高) linkedList(双向链表存储 安全)

  vertor可重复


15. 实现序列化:

        实现 serializable 接口 实现 enternaliable接口

 collection 中 实现 compareable接口 实现 比较方法

16. 序列化:  将对象的内容流化,可以 进行读写操作,

17. 装载--链接---初始化 classload装载

18. 实现多态: 重写 重载(同一个类的 不管 返回类型)

19. Fileout 可以 写入 字符串  out.read(str  str.getByte())

                                                         Filewrite     stream  

20.     @include   @taglib @page   常用指令  

                                        





































深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值