70. Climbing Stairs

70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2 输出: 2
解释: 有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶

示例 2:

输入: 3 输出: 3
解释: 有三种方法可以爬到楼顶。
1.  1 阶 + 1 阶 + 1 阶
2.  1 阶 + 2 阶
3.  2 阶 + 1 阶 

解法一

//回溯法(低效)
//时间复杂度O(2^n), 空间复杂度O(n)
//树形递归的大小为2^n
class Solution {
public:
    int climb(int step, int havePassed, int n) {//返回以后所有方法的个数
        if(step + havePassed > n) return 0;//该步爬过了,不计数
        if(step + havePassed == n) return 1;//该步爬到楼顶了,返回1
        //返回: 爬1阶+爬2阶
        return climb(1, havePassed + step, n) + climb(2, havePassed + step, n);
    }
   
    int climbStairs(int n) {
        return climb(1, 0, n) + climb(2, 0, n);
    }
};

解法二

//回溯法(带缓存优化版)
//时间复杂度O(n), 空间复杂度O(n)
class Solution {
public:
    Solution() : sol({1, 1}) {}
    int climbStairs(int n) {
        //n是剩余要走的阶数
        if(n < 0) return 0;//走过了,返回0
        if(n < sol.size()) return sol[n];//已经计算过, 直接查表
        int p = climbStairs(n - 1) + climbStairs(n - 2);
        sol.push_back(p);
        return p;//剩余n阶要走,计算解的数目
    }
private:
    vector<int> sol;//记录已计算过的解
};

解法三

#组合公式, Python代码
#时间复杂度O(n^2), 空间复杂度O(1)
class Solution:
    def combination(self, n, r): #组合数公式C(n, r) = n! / r! / (n - r)!
        t1 = 1
        t2 = 1
        diff = n - r
        while n > diff:
            t1 *= n
            n = n - 1
        while r > 1:
            t2 *= r
            r = r - 1
        return int(t1 / t2)
    def climbStairs(self, n: int) -> int:
        count = 0
        for i in range(math.floor(n / 2) + 1):
            count = count + Solution.combination(self, n - i, i)
        #return combination(8, 0);
        return count

解法四

//动态规划
class Solution {
public:
    int climbStairs(int n) {
        if(n == 0 || n == 1) return 1;
        int* d = new int[n + 1];
        d[0] = 1;
        d[1] = 1;
        for(int i = 2; i <= n; i++) {
            d[i] = d[i - 1] + d[i - 2];
        }
        return d[n];
    }
};

解法五

//菲波那契公式
class Solution {
public:
    int climbStairs(int n) {
        double temp1 = (1 + sqrt(5)) / 2;
        double temp2 = (1 - sqrt(5)) / 2;
        return (int)( 1 / sqrt(5) * (pow(temp1, n + 1) - pow(temp2, n + 1)) );
    }
};

解法一: 穷举所有可能。其递归树是个二叉树,时间复杂度O(2^n),每层递归空间需求是个常数,共n层,所是空间复杂度为O(n)。采用这种解法,n较小时还可以求解。这是leetcode官方题解上第一种解法,但是效率极低,实际提交甚至都通不过检测(超时错误)。

解法二: 仍是穷举法,使用了一个数组,记录先前的计算结果。优化了解法一,减少了不必要的计算。。

解法三: 用到了排列组合的知识,用Python代码原因是不用考虑计算阶乘时溢出的问题。大体思路是:

  1. 对于n阶的楼梯,一次上2阶的步数最小为0,最多为n / 2;
  2. 于是就对一次上2阶的步数进行遍历(0到n/2),累加各种情况的解的数目;
  3. 对于每个情况,当上2阶的步数为i时,其解的数目为C(n - i, i)。例如C(n, 0) = 1代表上2阶的步数为0,也就是全部用1阶走完整个楼梯,只有一种走法;C(n - 1, 1) = n - 1代表2阶的步数为1,其余都用1阶的方式来走完,有n - 1种走法;依此类推,2阶的步数最多有 n / 2个,也就是C(n / 2, n / 2) = 1,只有1种走法;
  4. 对以上遍历结果求和,也就是res = C(n, 0) + C(n - 1, 1) + C(n - 2, 2) + ... + C(n / 2, n / 2),返回res。

解法四: 动态规划法,需要额外的线性空间来存储状态函数值:

  1. 选取状态函数:选取d(i) 为爬i阶楼梯的所有解的数目,n阶楼梯一共有n种状态,此题要求的是d(n);
  2. 状态转移方程:在面对有i阶楼梯的情况下,可以选择迈出1步,剩下i - 1阶也就是有d(i - 1)种可能 ;也可以选择迈出2步也就是有d(i - 2)种可能。两者之和即为i阶情况的解数目。即 d(i) = d(i - 1) + d(i - 2)
  3. 看方程,需要初始化前两个状态。我们这里取d(0) = 1(表示没有楼梯可爬,那只有不爬这一种可能),d(1) = 1。
  4. 遍历一次,d(n)即是此题的解。

解法五: 第一眼看到解法四的方程怎么感觉这么熟悉呢?没错这就是大名鼎鼎的菲波那契数列的递推公式。爬楼梯问题不一定见过,这个问题一定见过吧,毕竟小学课本上就有。思路如下:

  1. 我们可以用递推法求解,省去了状态函数用的数组,用两个临时变量来保存上两步的结果,遍历一次就是我们要的结果;
  2. 但是更进一步,我们要站在巨人的肩膀上,这个问题已经有前人给我们总结的现成公式了: 斐波那契计算公式
2019/04/27 19:18
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值