687. Longest Univalue Path

687. 最长同值路径

给定一个二叉树,找到最长的路径,这个路径中的每个节点具有相同值。 这条路径可以经过也可以不经过根节点。

注意:两个节点之间的路径长度由它们之间的边数表示。

示例 1:

输入:

              5
             / \
            4   5
           / \   \
          1   1   5

输出:

2

示例 2:

输入:

              1
             / \
            4   5
           / \   \
          4   4   5

输出:

2

注意: 给定的二叉树不超过10000个结点。 树的高度不超过1000。

解法一

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int find(TreeNode* root) {
        if(!root) return 0;
        int pl = find(root->left);
        int pr = find(root->right);
        int count = 0, pathLen = 0;
        if(root->left && root->right) {
            int vl = root->left->val, vr = root->right->val, vm = root->val;
            count = max(vl == vm ? pl + 1 : 0, vr == vm ? pr + 1 : 0);
            if(vl == vm && vl == vr) pathLen = pl + pr + 2;
        }
        else if(root->left && !root->right) {
            count = root->left->val == root->val ? pl + 1 : 0;
        }
        else if(!root->left && root->right) {
            count = root->right->val == root->val ? pr + 1 : 0;
        }
        res = max(res, max(count, pathLen));
        return count;
    }
    int longestUnivaluePath(TreeNode* root) {
        res = 0;
        find(root);
        return res;
    }
private:
    int res;
};

思路:

此题解法和之前求树高的题目类似,只不过不再是单纯地对树高求和,中间要加一些条件,需要满足条件的父子结点才能计数。

函数find(root)采用先序遍历,返回值count是从当前根结点root出发的最长同值路径长。所以在遍历过程中有几种情况:

  1. 当前根结点root的左、右子树都为空。此时count为0;
  2. 左、右子树有其一为空。此时可分两种情况:
① 非空子结点值等于根结点值。此时count为find(root->left) + 1;
② 非空子结点值不等于根结点值。此时count为0;
  1. 左、右子树都非空。此时可分3种情况:
①左子结点值右子结点值都等于根结点值,此时count为 1 + max(find(root->left), find(root->right));
②左、右子结点值有其一等于根结点值,此时count为 1 + find(子结点值等于根结点值的那个子树);
③左、右子结点值都不等于根结点值,此时count为0。

以上的find函数只是返回了从根结点出发的最长同值路径长,而题目要求路径不一定要以根结点为出发点(就是说可以穿过根结点),所以需要一个变量pathLen,计录遍历过程中穿过当前根结点的最长同值路径长。

还好这一改动并不复杂,第1、2种情况(左、右子树至少有一个为空)里,pathLen都等于count。

对于第3种情况(左、右子树都非空),在其分类②、③中,pathLen也直接等于count。在分类①中,需要使pathLen等于左、右子树的最长同值路径长之和再加2,也就是pathLen = find(root->left) + find(root->rigfht) + 2。

使用res记录pathLen出现过的最大值即可。

思路理顺很好理解,就是条件太多,代码不好看。

2019/06/20 23:36
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值