746. 使用最小花费爬楼梯
数组的每个索引做为一个阶梯,第
i
个阶梯对应着一个非负数的体力花费值cost[i]
(索引从0开始)。每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或者爬两个阶梯。
您需要找到达到楼层顶部的最低花费。在开始时,你可以选择从索引为 0 或 1 的元素作为初始阶梯。
示例 1:
输入: cost = [10, 15, 20] 输出: 15 解释: 最低花费是从cost[1]开始,然后走两步即可到阶梯顶,一共花费15。
示例 2:
输入: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 输出: 6 解释: 最低花费方式是从cost[0]开始,逐个经过那些1,跳过cost[3],一共花费6。
注意:
cost
的长度将会在[2, 1000]
。- 每一个
cost[i]
将会是一个Integer类型,范围为[0, 999]
。
解法一
//时间复杂度O(n), 空间复杂度O(n)
class Solution {
public:
int climb(int i, int step, const vector<int>& cost, vector<int>& rec) {
if(i + step > cost.size()) return 0;
if(rec[i + step - 1] != -1) return rec[i + step - 1];
int s1 = climb(i + step, 1, cost, rec);
int s2 = climb(i + step, 2, cost, rec);
rec[i + step - 1] = min(s1, s2) + cost[i + step - 1];
return rec[i + step - 1];
}
int minCostClimbingStairs(vector<int>& cost) {
vector<int> rec(cost.size(), -1);
int s1 = climb(0, 1, cost, rec);//i 当前已走0阶, step 下一步要上1阶
int s2 = climb(0, 2, cost, rec);
return min(s1, s2);
}
};
解法二
//时间复杂度O(n), 空间复杂度O(n)
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int n = cost.size();
int rec[n + 1];
rec[n] = 0;
rec[n - 1] = cost[n - 1];
for(int i = n - 2; i >= 0; i--) rec[i] = cost[i] + min(rec[i + 1], rec[i + 2]);
return min(rec[0], rec[1]);
}
};
解法三
//时间复杂度O(n), 空间复杂度O(1)
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int n = cost.size();
int r1 = cost[n - 1], r2 = 0, r0;
for(int i = n - 2; i >= 0; i--) {
r0 = cost[i] + min(r1, r2);
r2 = r1;
r1 = r0;
}
return min(r1, r2);
}
};
解法一
空间优化递归。建立一个表rec[n]记录踩上第i阶之后的总花费(第i阶及以后台阶的cost和)。climb函数的形参i代表当前已走过的台阶数;step代表下一步要上的台阶数。
- 在主函数中调用climb,迈出第一步(上1阶或上2阶),返回花费较小的选择的cost。
- 在递归函数climb中,先查表rec看当前所在的台阶(索引i + step - 1)是否已经计算过最小花费,若是直接返回;否则继续调用climb,并保存下计算过的结果到rec中。
- 递归终止条件是已爬到最高阶(i + step > n),或者该阶及其后的最小花费已计算过(在表rec中有记录)。
解法二
迭代法。明白解法一的思路之后,发现可以倒序地构建rec数组而不使用递归。也就是
rec[n] = 0;//rec长度为n + 1
rec[n - 1] = cost[n - 1];
rec[i] = cost[i] + min(rec[i + 1], rec[i + 2]);
最后返回min(rec[0], rec[1])即可。
解法三
思路和解法二一样,只是用了三个变量避免了rec数组的使用。
2019/06/29 14:23