746. Min Cost Climbing Stairs

746. 使用最小花费爬楼梯

数组的每个索引做为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 cost[i](索引从0开始)。

每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或者爬两个阶梯。

您需要找到达到楼层顶部的最低花费。在开始时,你可以选择从索引为 0 或 1 的元素作为初始阶梯。

示例 1:

输入: cost = [10, 15, 20]
输出: 15
解释: 最低花费是从cost[1]开始,然后走两步即可到阶梯顶,一共花费15。

 示例 2:

输入: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出: 6
解释: 最低花费方式是从cost[0]开始,逐个经过那些1,跳过cost[3],一共花费6。

注意:

  1. cost 的长度将会在 [2, 1000]
  2. 每一个 cost[i] 将会是一个Integer类型,范围为 [0, 999]

解法一

//时间复杂度O(n), 空间复杂度O(n)
class Solution {
public:
    int climb(int i, int step, const vector<int>& cost, vector<int>& rec) {
        if(i + step > cost.size()) return 0;
        if(rec[i + step - 1] != -1) return rec[i + step - 1];
        int s1 = climb(i + step, 1, cost, rec);
        int s2 = climb(i + step, 2, cost, rec);
        rec[i + step - 1] = min(s1, s2) + cost[i + step - 1];
        return rec[i + step - 1];
    }
    
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> rec(cost.size(), -1);
        int s1 = climb(0, 1, cost, rec);//i 当前已走0阶, step 下一步要上1阶
        int s2 = climb(0, 2, cost, rec);
        return min(s1, s2);
    }
};

解法二

//时间复杂度O(n), 空间复杂度O(n)
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        int rec[n + 1];
        rec[n] = 0;
        rec[n - 1] = cost[n - 1];
        for(int i = n - 2; i >= 0; i--) rec[i] = cost[i] + min(rec[i + 1], rec[i + 2]);
        return min(rec[0], rec[1]);
    }
};

解法三

//时间复杂度O(n), 空间复杂度O(1)
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        int r1 = cost[n - 1], r2 = 0, r0;
        for(int i = n - 2; i >= 0; i--) {
            r0 = cost[i] + min(r1, r2);
            r2 = r1;
            r1 = r0;
        }
        return min(r1, r2);
    }
};

解法一

空间优化递归。建立一个表rec[n]记录踩上第i阶之后的总花费(第i阶及以后台阶的cost和)。climb函数的形参i代表当前已走过的台阶数;step代表下一步要上的台阶数。

  1. 在主函数中调用climb,迈出第一步(上1阶或上2阶),返回花费较小的选择的cost。
  2. 在递归函数climb中,先查表rec看当前所在的台阶(索引i + step - 1)是否已经计算过最小花费,若是直接返回;否则继续调用climb,并保存下计算过的结果到rec中。
  3. 递归终止条件是已爬到最高阶(i + step > n),或者该阶及其后的最小花费已计算过(在表rec中有记录)。

解法二

迭代法。明白解法一的思路之后,发现可以倒序地构建rec数组而不使用递归。也就是

    rec[n] = 0;//rec长度为n + 1
    rec[n - 1] = cost[n - 1];
    rec[i] = cost[i] + min(rec[i + 1], rec[i + 2]);

最后返回min(rec[0], rec[1])即可。

解法三

思路和解法二一样,只是用了三个变量避免了rec数组的使用。

2019/06/29 14:23
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值