883. Projection Area of 3D Shapes

883. 三维形体投影面积

在 N * N 的网格中,我们放置了一些与 x,y,z 三轴对齐的 1 * 1 * 1 立方体。

每个值 v = grid[i][j] 表示 v 个正方体叠放在单元格 (i, j) 上。

现在,我们查看这些立方体在 xy、yz 和 zx 平面上的投影

投影就像影子,将三维形体映射到一个二维平面上。

在这里,从顶部、前面和侧面看立方体时,我们会看到“影子”。

返回所有三个投影的总面积。

 

          示例 1:

          输入:[[2]]
          输出:5
          

          示例 2:

          输入:[[1,2],[3,4]]
          输出:17
          解释:
          这里有该形体在三个轴对齐平面上的三个投影(“阴影部分”)。
          
          

          示例 3:

          输入:[[1,0],[0,2]]
          输出:8
          

          示例 4:

          输入:[[1,1,1],[1,0,1],[1,1,1]]
          输出:14
          

          示例 5:

          输入:[[2,2,2],[2,1,2],[2,2,2]]
          输出:21
          

           

          提示:

          • 1 <= grid.length = grid[0].length <= 50
          • 0 <= grid[i][j] <= 50

          解法一

          //时间复杂度O(n*n), 空间复杂度O(n)
          class Solution {
          public:
              int projectionArea(vector<vector<int>>& grid) {
                  int n = grid.size(), area = 0;
                  vector<int> rowMax(n, 0), colMax(n, 0);
                  for(int i = 0; i < n; i++) {
                      for(int j = 0; j < n; j++) {
                          rowMax[i] = max(rowMax[i], grid[i][j]);
                          colMax[j] = max(colMax[j], grid[i][j]);
                          if(grid[i][j]) area++;
                      }
                  }
                  for(int i = 0; i < n; i++) {
                      area += (rowMax[i] + colMax[i]);
                  }
                  return area;
              }
          };

          解法二

          class Solution {
          public:
              int projectionArea(vector<vector<int>>& grid) {
                  int n = grid.size(), area = 0;
                  for(int i = 0; i < n; i++) {
                      int rowMax = 0, colMax = 0;
                      for(int j = 0; j < n; j++) {
                          rowMax = max(rowMax, grid[i][j]);
                          colMax = max(colMax, grid[j][i]);
                          if(grid[i][j]) area++;
                      }
                      area += rowMax + colMax;
                  }
                  return area;
              }
          };

          隐含的条件: 三个方向的投影,其中xy面上投影面积是矩阵中非零元素的个数,xz和yz面上的投影面积是每一行(列)最大元素之和。

          这样思路就明白了,只需要遍历矩阵,找出

          1. 每一行的最大元素;
          2. 每一列的最大元素;
          3. 非零元素的个数。

          对这三者求和就是答案。

          最低效的方法是对这三个条件遍历三次。

          解法一:使用了两个额外的数组,同时记录了这三个值,最后对数组求和处理,返回结果。用时12ms。

          解法二:不使用额外的空间,而是在循环体内同时进行按行遍历和按列遍历,行、列最大值保存在变量中,最后返回三者之和。用时16ms。

          解法一和二各有优劣。

          1. 从空间上看,解法二的优点是它是O(1)的空间需求,而解法二需要O(n)的空间。
          2. 从时间上看,表面上看解法二没有额外的对数组的求和处理,好像解法二更加高效,但是由于解法二按列遍历,违反了空间局部性原则,导致其效率略低。这是它耗时16ms的原因之一。

          提高效率的一些技巧:

          1. 空间局部性原则:遍历二维数组时,最好按行优先的顺序进行访问(因为行中的元素在内存中是顺序排列的);
          2. 循环展开:通过增加每次迭带计算的元素的数量,减少迭代次数。例如对一维数组从1到n求和,常规做法是在循环体内对变量sum += a[i];而利用循环展开的做法是,使用两个变量sum1 = a[i], sum2 = a[i + 1],i可以一次加2,最后对sum1和sum2求和。
          3. 尽量减少内存引用。
          4. 避免不必要的重复计算:这个例子很常见,对于如下代码,后者会更高效一些。
              //形式1:
              for(int i = 0; i < vec.size(); i++) {...}
              
              //形式2:更好的改进
              int len = vec.size();
              for(int i = 0; i < len; i++) {...}

          这部分知识要以参考《深入理解计算机系统》(CSAPP)的第5章和第6章。

          2019/07/24 12:29
          • 0
            点赞
          • 0
            收藏
            觉得还不错? 一键收藏
          • 0
            评论

          “相关推荐”对你有帮助么?

          • 非常没帮助
          • 没帮助
          • 一般
          • 有帮助
          • 非常有帮助
          提交
          评论
          添加红包

          请填写红包祝福语或标题

          红包个数最小为10个

          红包金额最低5元

          当前余额3.43前往充值 >
          需支付:10.00
          成就一亿技术人!
          领取后你会自动成为博主和红包主的粉丝 规则
          hope_wisdom
          发出的红包
          实付
          使用余额支付
          点击重新获取
          扫码支付
          钱包余额 0

          抵扣说明:

          1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
          2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

          余额充值