530. 二叉搜索树的最小绝对差
给定一个所有节点为非负值的二叉搜索树,求树中任意两节点的差的绝对值的最小值。
示例 :
输入: 1 \ 3 / 2 输出: 1 解释: 最小绝对差为1,其中 2 和 1 的差的绝对值为 1(或者 2 和 3)。
注意: 树中至少有2个节点。
解法一
//时间复杂度O(n^2), 空间复杂度O(n)
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
void buildArray(TreeNode* root) {
if(root == nullptr) return;
rec.push_back(root->val);
buildArray(root->left);
buildArray(root->right);
};
int getMinimumDifference(TreeNode* root) {
buildArray(root);
int minAbs = INT_MAX;
for(int i = 1; i < rec.size(); i++) {
for(int j = 0; j < i; j++) {
int diff = abs(rec[i] - rec[j]);
if(diff < minAbs) minAbs = diff;
}
}
return minAbs;
}
private:
vector<int> rec;
};
解法二
//时间复杂度O(n), 空间复杂度O(1)
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
void getMinDiff(TreeNode* root, int& minDiff, int& preVal) {//先前最小绝对值差, 上一个节点值
if(root->left) getMinDiff(root->left, minDiff, preVal);//访问左子树
if(preVal >= 0) minDiff = min(root->val - preVal, minDiff);//更新最小绝对值差
preVal = root->val;//更新上一节点值
if(root->right) getMinDiff(root->right, minDiff, preVal);//右子树
}
int getMinimumDifference(TreeNode* root) {
int minDiff = INT_MAX, preVal = -1;
getMinDiff(root, minDiff, preVal);//中序遍历
return minDiff;
}
};
解法一 暴力搜索,先遍历一次构建一个数组,再对数组进行双重遍历。这样没有用到BST的排序性质,需要二次的运行时间;
解法二 对BST进行中序遍历,会得到一个从小到大的序列,刚好相邻两个元素就可以用来求绝对值差。使用了变量minDiff记录出现过的最小绝对值差,使用变量preVal记录上一个元素的值。 要特别注意的是,序列中第一个节点没有preVal,所以preVal = -1代表它是最小元素,不需要更新minDiff。
2019/05/28 11:48