- 博客(2)
- 收藏
- 关注
转载 机器学习基础-分类算法
机器学习基础-分类算法 k近邻算法KNN 样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本属于这个类别 k近邻算法需要做标准化处理 距离的计算公式 1.闵可夫斯基距离 欧式距离 p=2 曼哈顿距离 p=1 切比雪夫距离 当p接近与无穷大时 闵可夫斯基距离比较直观,但是它与数据的分布无关,具有一定的局限性,如果 x 方向的幅值远远大于 y 方向的值,这个距离公式就会过度放大 x 维度的作用。所以,在计算距离之前,我们可能还需要对数据进行z...
2020-08-24 15:56:17 352
原创 机器学习基础scikitlearn-特征工程
这里写自定义目录标题机器学习基础-特征工程特征抽取sklearn.feature_extractiontf-idf(词频-逆向文件频率)特征处理数值类型归一化和标准化缺失值处理差补法删除法 机器学习基础-特征工程 特征工程是将原始数据转换为更好地代表预测模型的潜在问题的特征的过程,从而提高了对未知数据的模型准确性。 特征抽取 sklearn.feature_extraction 字典特征抽取 def dictvec(): """ 字典数据抽取 :return: None ""
2020-08-23 22:04:22 123
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人