Linux 服务器 apt 源配置方法【一文读懂】 在Ubuntu 虚拟机中折腾 YOLOX ,需要基础 GCC、G++ ,无论采用 sudo apt install XX 还是源码安装都遇到一些问题 ,最终解决方案是,设置 Linux apt 源配置,从而 sudo apt install XX 成功,解决了网络安装库下载不可达问题.........
opencv-python库的安装【一文读懂】 opencv-python 库的安装 顾名思义,Python 代码运行需要依赖使用的 openCV 库;opencv C++ 库的安装 顾名思义,C、C++ 代码编译运行需要依赖使用的 openCV C++ 库;
模型训练前后显卡占用对比、多卡训练GPU占用分析【一文读懂】 本次博文简单记录,多卡训练任务中 ,各个 GPU 资源占用情况 ,内容较为基础,后续有新的心再继续补充:多卡训练任务中,主卡需要承担和其他卡之前的通信,可以看到 :实验一:0,1,2,3 四卡训练,0 号主卡多了 3个 通信 进程...
开放域OOD主要数据集、评价指标汇总 in-distribution data (分布内训练数据集)、OOD test dataset (分布外测试数据集)Evaluation metrics. We evaluate the performance of OOD detection by measuring the following metrics
为什么你的电脑搜索不到你手机开启的热点 相信能够打开这篇文章的小伙伴,大概率是遇到了和我类似的困境哈 - 临时没有网线、周围一堆无线网,可是没有密码 - 自己手机开个热点,怎么也找不到 - 然后让同事开个热点,靠,怎么也找不到哇 - 泪目......
RuntimeError: [enforce fail at inline_container.cc:145] 【报错总结】 磁盘空间不足,导致训练过程中正在生成的模型保存失败,从而resume训练时,加载报错;可以解决我们训练中断(断电、磁盘空间不足)的问题,resume 训练即可;代码逻辑中要有 resume 训练的判断
细粒度识别、分类、检索数据集整理 细粒度相关研究中用到的主要数据集如下:Fine-grained visual classification (FGVC) 相关主要训练和测评数据集如下:CUB-200-2011、Standford Cars、FGVC-Aircraft
【论文笔记】ECCV_2016_The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition 目前细粒度识别的主要方法包括两个步骤。首先,收集数据集。由于细粒度识别对人类来说是一项固有的困难任务,这通常需要招募一个专家团队【58,38】或广泛的众包渠道【30,4】。其次,使用这些专家标注的标签来训练识别方法,可能还需要以零件、属性或关系的形式进行附加标注[75,26,36,5]。虽然采用这种方法的方法取得了一些成功[5,75,36,28],但由于这些限制,其性能和可扩展性受到可用数据不足的限制。...
image inpainting 还有哪些优化的点啊 这些 Trick 当然是有的,可问题是、如果这些 Trick 那么好实现、好验证你、我、或者其它卷到这个赛道的小伙伴、难道不会自己去实现、然后 水一篇SCI、实力 + 运气好 上波顶会 ?
媒体领域AI能力测评,黑白图像上色、一键微笑哪家强 优秀的视频编辑服务,不仅能够记录我们现在的生活,还能够让我们穿越过去,和时空对话。随着近些年、AI着色、老照片还原、人脸表情编辑、视频清晰化等 AI 技术的飞速发展,各大厂商也相继提供了 AI开放平台 供用户和开发者体验使用。墨理就 华为、百度、阿里、字节、Adobe 等知名企业的 AI 相关技术(AI 着色、一键微笑) 的效果展开初步体验和评测 。...
win10系统盘制作和 ubuntu 20 装机体验之旅: Nouveau 禁用、Cuda安装 最终考虑再三,由于3070Ti 这类的显卡 对于 当前的笔记本电脑电量消耗太快,2个小时就没电了,给了我一种笔记本还不如台式电脑的感觉;先说一下优点:16G内存、最新代的 i7 , 3070Ti 这等笔记本配置 在 2022 年算是顶配了,办公体验当然是很流畅的(比如:打开100+网页、打开10+ Pycharm 或者 VSCode 编辑器项目 )
Ubuntu20安装并配置OpenVINO【图文教程】 Ubuntu20安装并配置OpenVINO【详细图文教程】,Install OpenVINO;随着AI技术等对应用开发和功能实现的影响越来越大,这也就要求相关企业具备更强的AI开发能力,从数据收集、数据预处理、数据标注、模型训练、模型评估和模型部署等一系列任务,无一不考验着企业的AI模型精度和AI推理速度、AI 算力资源等AI开发、落地能力。
win11安装VSCode之图文教程 最近折腾了一台 显卡 RTX3070Ti ( 8G ) 的笔记本主要用来折腾、偶尔跑一些小的模型评测 因此要对新电脑开始一系列的软件安装;这里就先记录一篇 VSCode 的安装,就很简单的样子,本博文面向的读者:软件安装小白、新同学
图像修复 : 基于条件纹理和结构并行生成的图像修复——ICCV 2021 【附测评源码】 图像修复ICCV 2021文章测评:代码简洁、很直观,没有注意到,论文是否提到 BaseLine ,不过感觉就是 似曾相识,可能是之前看的论文太多了, 网络结构、大体就是那样、变过来、变过去、细节决定 提升效果
图像修复 : ICCV 2021 基于条件纹理和结构并行生成的图像修复【翻译】 为了增强全局一致性,设计了双向门控特征融合 (Bi-GFF) 模块来交换和组合结构和纹理信息,并开发了上下文特征聚合 (CFA) 模块来按区域细化生成的内容亲和力学习和多尺度特征聚合。在 CelebA、Paris StreetView 和 Places2 数据集上的定性和定量实验证明了所提出方法的优越性
云原生之 K8S 能够做什么 Kubernetes的名字来自希腊语,意思是“舵手” 或 “领航员”。K8s是将8个字母“ubernete”替换为“8”的缩写。Kubernetes 特点:可移植: 支持公有云,私有云,混合云,多重云(multi-cloud);可扩展: 模块化, 插件化, 可挂载, 可组合;自动化: 自动部署,自动重启,自动复制,自动伸缩/扩展