- 博客(17)
- 资源 (7)
- 收藏
- 关注
原创 Claude Code保姆级安装使用指南
《终端AI编程工具ClaudeCode快速指南》摘要:ClaudeCode是Anthropic推出的终端AI编程工具,可直接在终端完成代码生成、调试修复、项目理解等任务。只需Node.js18+环境,通过npm全局安装即可使用。核心功能包括:根据描述生成完整功能代码(如React组件)、智能调试修复错误、回答项目结构问题、自动化处理Git合并冲突等。支持管道命令组合实现日志监控等复杂工作流,并可与VSCode等IDE集成。该工具特别适合需要快速开发迭代和解决技术问题的场景,同时支持企业级安全部署。
2025-10-17 09:59:38
65
原创 基于Spring AI Alibaba构建NLP2SQL智能查询系统,让业务人员轻松玩转大数据
在大数据时代,数据驱动决策已成为企业核心竞争力。学习曲线陡峭:SQL语法复杂,掌握需要大量时间成本沟通成本高:业务人员需向技术人员反复解释需求效率低下:简单的查询需求也要等待技术排期容易出错:不熟悉的开发者编写的SQL性能低下今天我将分享如何基于构建一个企业级的自然语言转SQL系统,让AI成为你的专属SQL编写助手!✅ 技术创新:将AI大模型能力与数据库查询完美结合✅ 用户体验:自然语言交互,真正零学习成本✅ 企业级可靠:高可用、高性能、高安全性架构✅ 可扩展性:模块化设计,易于定制和扩展。
2025-08-21 17:28:22
1141
原创 Paimon主键表的合并机制
Paimon主键表提供三种数据合并机制:1) deduplicate(默认)保留最新数据并删除旧数据,支持删除操作;2) first-row保留首条数据,效率更高但不处理删除操作;3) partial-update支持增量更新,保留非空列值。特殊场景下可通过sequence字段控制合并顺序,或通过aggregation函数实现聚合操作。每种机制各有特点,需根据业务需求选择,如deduplicate适合简单去重,partial-update适合列式更新场景,first-row适合仅需保留首次数据的场景。
2025-07-25 14:39:43
999
原创 Flink 1.20 SQL 物化表(Materialized Table)
Apache Flink 1.20 作为迈向 2.0 时代的最后过渡版本,引入了 这一革新性特性。它通过统一的 SQL 接口重构了流批数据处理管道的开发范式,显著降低了实时数据加工的复杂度。本文将深入解析其核心原理与实践价值。在创建物化表时指定数据新鲜度和查询,引擎会自动推导物化表的模式,并创建相应的数据刷新管道以实现指定的新鲜度。
2025-07-14 16:33:11
1320
原创 Paimon Action Jars原子化的数据管理
Apache Paimon 通过 Flink Action Jars 提供原子化的数据管理能力,无需启动 SQL 环境即可执行表维护、数据合并与元数据操作。其核心价值在于:关键语义定义:场景 1:订单状态批量更新场景 2:跨 Catalog 动态源表场景 3:数据归档与清理三、关键数据管理操作详解1. 条件删除 (Delete Action)高级能力:注意事项:核心价值: 并行度控制:通过 Catal
2025-06-27 14:50:22
846
原创 Apache Paimon Procedures 深度解析
Paimon Procedures通过 “元数据操作代替计算作业”资源效率:节省90%的运维计算资源敏捷响应:命令执行从分钟级降至秒级生态统一:复用SQL技能降低学习成本随着Flink 2.0对Call Statements的深度集成,Paimon有望成为首个实现 “完全SQL驱动” 的数据湖格式,推动流批一体架构进入新纪元。
2025-06-22 17:44:09
664
原创 Apache Paimon 分区表:从创建到过期管理
Paimon 分区表通过声明分区字段,支持单字段或多字段组合。关键约束:若表定义主键,分区字段必须是主键的子集。-- 单字段日期分区(主键包含分区字段)dt STRING,-- 多字段复合分区(需主键包含所有分区字段)Apache Paimon 的分区管理能力为实时数据湖提供了灵活、高效的生命周期管理方案。通过合理设计分区策略、结合流批一体特性,开发者可以构建高性能、低成本的数据处理管道。
2025-05-27 16:27:08
1193
原创 flink1.12连接hive2.1.1中 hadoop版本问题
通过排查ShimLoader.java源码,开源社区hive 2.x的版本这种情况下是不支持hadoop 3.x版本。但是CDH中hive 2.1.1-cdh6.3.2版本和社区版本是不一样的,可以支持hadoop 3.x版本。对于普通的文本格式的hive表是可以正常查询的,但是对于orc格式的hive表,基于CDH-6.3.2这个环境是会报错的。
2025-05-26 14:23:03
205
原创 Kyuubi+Spark+Hive:构建新一代大数据服务化架构实战
本文通过深度整合Kyuubi、Spark和Hive,构建了支持高并发、低延迟的SQL服务化平台。该方案已在某头部电商的生产环境支撑日均10万+查询,资源利用率提升40%。随着云原生技术的普及,这种架构将成为大数据基础建设的标准范式。延伸阅读Apache Kyuubi官方文档:https://kyuubi.apache.org/Spark性能优化权威指南(CSDN专题)(本文代码实测环境:OpenJDK 11,Hadoop 3.3.4,欢迎在评论区获取完整配置包)结构化亮点技术深度。
2025-05-26 14:20:15
772
原创 Python入门教学:第一章 从零开始编写你的「疫情数据追踪程序」
一行代码验证安装效果(打开CMD/Terminal输入。用VS Code创建超维空间站。f"确诊{500}"
2025-03-22 17:11:44
278
原创 Paimon 表类型详解:从基础到高级应用
Paimon 支持多种表类型,每种类型都有其独特的应用场景和优势。带主键的表(Table with PK):支持主键约束,确保数据的唯一性,适合需要频繁更新和查询的场景。无主键的表(Table w/o PK):适用于追加数据的场景,不支持直接更新,但支持批量操作。视图(View):虚拟表,依赖于元数据存储,适合跨引擎查询。格式表(Format Table):支持多种文件格式,如 CSV、Parquet、ORC、JSON,适合与 Hive 表集成。对象表(Object Table)
2025-03-19 13:45:35
1026
原创 Paimon Catalog 与Spark引擎的表管理
文件系统元数据存储(默认):元数据和表文件都存储在文件系统中。Hive 元数据存储:元数据存储在 Hive Metastore 中,用户可以直接从 Hive 访问表。JDBC 元数据存储:元数据存储在关系型数据库(如 MySQL、Postgres 等)中。本文详细介绍了如何在 Paimon 中创建和管理 Catalog 和表。通过不同类型的 Catalog,您可以灵活地选择元数据存储方式,并通过 SQL DDL 语句轻松管理表、视图和标签。希望这篇指南能帮助您更好地理解和使用 Paimon 的强大功能。
2025-03-18 15:15:38
2358
原创 Kyuubi vs Spark Thrift Server vs Hive Thrift Server:全面对比与深度解析
在大数据生态系统中,SQL-on-Hadoop 技术一直是一个热门话题。随着数据规模的不断增长,企业和开发者需要高效、灵活的工具来执行分布式 SQL 查询。Kyuubi、Spark Thrift Server 和 Hive Thrift Server 是三种常见的 SQL 服务解决方案,它们各自有不同的设计目标、适用场景和性能特点。本文将深入对比这三者的架构、功能、性能、适用场景以及优缺点,帮助读者更好地选择适合自己业务需求的工具。
2025-03-13 13:31:37
735
原创 Kyuubi + Spark:构建高效的大数据查询与分析平台
Kyuubi 是一个开源的分布式 SQL 服务,基于 Apache Spark 构建,旨在为多租户环境提供高效、稳定的 SQL 查询服务。Kyuubi 的核心目标是通过资源隔离、查询优化和统一管理,提升 Spark 在大规模数据查询中的性能和可用性。Apache Spark 是一个开源的分布式计算框架,以其高性能和易用性在大数据领域广受欢迎。Spark 支持批处理、流处理、机器学习和图计算等多种计算模式。Kyuubi + Spark 的集成为企业提供了一种高效、稳定的大数据查询与分析解决方案。
2025-03-13 10:24:04
1298
原创 Alluxio与S3、Hive的深度集成:实现高效数据加载与查询
在大数据生态系统中,Alluxio、S3和Hive是三个非常重要的组件。Alluxio作为一个分布式内存加速层,能够显著提升数据访问速度;S3是亚马逊提供的对象存储服务,广泛应用于数据存储;Hive则是基于Hadoop的数据仓库工具,用于数据查询和分析。本文将详细介绍如何将Alluxio与S3、Hive集成,实现高效的数据加载与查询。
2025-03-13 10:15:56
2169
原创 从入门到实战:手把手教你掌握DeepSeek开源工具的核心用法
DeepSeek的核心优势:轻量级架构与高性能计算的结合,对中文NLP任务的专项优化(如分词、实体识别),开源社区活跃,支持快速迭代
2025-03-03 14:40:14
2058
原创 【实战】Dinky 1.2.1集成Flink 1.18.1:Kubernetes全流程部署指南
USER root#下载dink jar并解压到与DokerFile 同级目录下#需要mysql 驱动# 添加创建软链接的命令注意:dinky 启动需要MySQL驱动。2.构建flink镜像Dockerfile#如有需要可自行加此配置。# 更改 s3-fs-hadoop 目录的所有者和所属组为 flink#如需kafak,可配置。
2025-03-03 10:45:32
951
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人