算法# 学习目标:动态规划算法(一 )
学习内容:
动态规划算法:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
在查找有很多重叠子问题的情况的最优解有效。动态规划保存子问题的解,避免重复计算。
学习产出:
基本动态规划:一维
动态规划
解决动态规划问题的关键是找到状态转移方程,这样就可以通过计算和存储子问题的解来解决最终问题。
LeetCode 70 爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。)
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/climbing-stairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解
定义一个数组d[i] , d[i]表示走到第 i 阶的方法数。因此第 i 阶可以从第 i - 1或是第 i - 2阶到达,即走到第i-1阶的方法数加上走到第i-2阶方法数等于走到第i阶的方法数。这样状态转移方程即为 d[i] = d[i-1]+d[i-2]
代码(python)
class Solution:
def climbStairs(self, n: int) -> int:
if n <= 2: return n
d = [1 for i in range(n+1)]
for i in range(2,n+1):
d[i] = d[i - 1] + d[i - 2]
return d[i]
进一步,可以对动态规划空间进行压缩,因为d[i]只与d[i-1]和d[i-2]有关,所以只用两个变量存储d[i-1]和d[i-2]优化空间复杂度
class Solution:
def climbStairs(self, n: int) -> int:
if n <= 2: return n
p1,p2 = 1,2
for i in range(2,n):
cur = p1 + p2
p1 = p2
p2 = cur
return cur
LeetCode 198 打家劫舍
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
示例 1:
输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/house-robber
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解
定义一个数组d[i] , d[i]表示偷窃第 i 个的房子,偷窃的最大数量。如果不偷窃这个房子,则累计金额为d[i-1];如果偷窃,则之前累计最大金额为d[i-2]。因此状态转移方程为d[i] = max(d[i-1],第i个房子内的金额+d[i-2])
代码(python)
class Solution:
def rob(self, nums: List[int]) -> int:
if not len(nums): return 0
n = len(nums)
d = [0 for i in range(n+1)]
d[1] = nums[0]
for i in range(2,n+1):
d[i] = max(d[i-1],nums[i-1]+d[i-2])
return d[n]