算法复习:连续子数组的最大和

题目描述

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?(子向量的长度至少是1)

解题思路

从头一个个加,加起来的和是负数,那继续加肯定是越来越小的,所以就抛弃掉,将结果重置为当前的值(注意不是重置为0),假如结果不是负数就继续加。但是我们不知道继续加若干个数会不会变大,所以还需要一个变量来保存当前的最大的数,假如加起来的结果比这个变量大就替换它,注意这个变量初始值要为最小的值。

代码

public int FindGreatestSumOfSubArray(int[] array) {
    if (array.length < 0 || array == null)
        return 0;
    int curSum = 0;
    int greatestSum = Integer.MIN_VALUE;
    for (int i = 0; i < array.length; i++) {
        if (curSum < 0)
            curSum = array[i];
        else
            curSum += array[i];
        if (curSum > greatestSum)
            greatestSum = curSum;
    }
    return greatestSum;
}
  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

瞌睡君

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值