A - 2001 斐波那契

Problem Description

斐波那契(Fibonacci,意大利数学家,1170年-1240年)数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……。这个数列从第三项开始,每一项都等于前两项之和。在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用。
已知斐波那契数列第n项的计算公式如下。在计算时有两种算法:递归和非递归,请给出其中一种算法。
当n=0时,Fib(n)=0,当n=1时,Fib(n)=1,当n>1时,Fib(n)= Fib(n-1)+ Fib(n-2)

Input

第一行是测试数据的组数m,后面跟着m行输入。每行包括一个项数n和一个正整数a。(m,n,a均大于0,且均小于10000000)

Output

输出包含m行,每行对应一个输入,若a不大于Fib(n),则输出Yes,否则输出No(中间没有空行)

Sample Input

3
1 3
10 50
24 20000

Sample Output

No
Yes
Yes
#include <iostream>
using namespace std;
long long fib(int n)
{
    unsigned long long x=0;
    unsigned long long y=1;
    unsigned long long t=n;
    for(int j=2;j<=n;j++)
    {
        t=x+y;
        x=y;
        y=t;
    }
    return t;
}
int main()
{
    int m,n,a;
    cin>>m;
    if((m>0)&&(m<10000000))
    {
        for(int i=0;i<m;i++)
        {
            cin>>n>>a;
            if((n>0)&&(a>0)&&(n<10000000)&&(a<10000000))
            {
                if(a<=fib(n))
                {
                    cout<<"Yes"<<endl;
                }
                else
                {
                    cout<<"No"<<endl;
                }
            }
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值