Problem Description
斐波那契(Fibonacci,意大利数学家,1170年-1240年)数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……。这个数列从第三项开始,每一项都等于前两项之和。在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用。
已知斐波那契数列第n项的计算公式如下。在计算时有两种算法:递归和非递归,请给出其中一种算法。
当n=0时,Fib(n)=0,当n=1时,Fib(n)=1,当n>1时,Fib(n)= Fib(n-1)+ Fib(n-2)
Input
第一行是测试数据的组数m,后面跟着m行输入。每行包括一个项数n和一个正整数a。(m,n,a均大于0,且均小于10000000)
Output
输出包含m行,每行对应一个输入,若a不大于Fib(n),则输出Yes,否则输出No(中间没有空行)
Sample Input
3 1 3 10 50 24 20000
Sample Output
No Yes Yes
#include <iostream>
using namespace std;
long long fib(int n)
{
unsigned long long x=0;
unsigned long long y=1;
unsigned long long t=n;
for(int j=2;j<=n;j++)
{
t=x+y;
x=y;
y=t;
}
return t;
}
int main()
{
int m,n,a;
cin>>m;
if((m>0)&&(m<10000000))
{
for(int i=0;i<m;i++)
{
cin>>n>>a;
if((n>0)&&(a>0)&&(n<10000000)&&(a<10000000))
{
if(a<=fib(n))
{
cout<<"Yes"<<endl;
}
else
{
cout<<"No"<<endl;
}
}
}
}
return 0;
}