DL
文章平均质量分 80
EwanRenton
这个作者很懒,什么都没留下…
展开
-
[sentence encoder] 使用Skip-Thought Vectors在自己的数据集上训练一个sentence encoder
Skip-Thought Vectors Skip-Thoughts 模型是一个句子编码器。它学习将输入的句子编码成固定维度的向量表示,这些向量表示能够对许多任务有用,例如检测释义,或对产品评论进行积极或消极的分类等等。有关模型架构和更多示例应用的详细信息,可以参阅Ryan Kiros 等人的 NIPS 论文 Skip-Thought Vectors。用法Skip-Tho...原创 2018-07-31 22:33:53 · 3776 阅读 · 0 评论 -
mmdetection源码阅读笔记(2)--Loss
之前做完比赛过后计划看看mmdetection的源码写点blog,写了两篇过后忙其他事去了,这里就接着把之前没写完的东西补上。之前写了模型和网络的创建,这里就主要写下训练过程中具体的loss,主要分为以下几部分RPN_lossbbox_lossmask_lossRPN_lossrpn_loss的实现具体定义在mmdet/models/anchor_head/rpn_head...原创 2019-06-28 23:37:50 · 4340 阅读 · 5 评论 -
天池竞赛-津南数字制造算法挑战赛【赛场二】比赛总结
前言赛题介绍:天池竞赛-津南数字制造算法挑战赛【赛场二】团队: ALL FATHER GIVE ME SIGHT队长:Bloodhound初赛:23/2157 A榜:0.6095 B榜:0.5728复赛:32 A榜:0.7239 B榜:0.7114虽然成绩一般,这也算是第一次正式参加比赛吧,权当记录下这两个月的工作。初赛最开始初赛任务是,判断出图像中包含哪些违禁品。...原创 2019-04-30 00:22:32 · 2303 阅读 · 15 评论 -
mmdetection源码阅读笔记(1)--创建网络
之前写了mmdetection的模型创建部分,这次以cascade rcnn为例具体看下网络是怎么构建的。讲网络之前,要先看看配置文件,这里我主要结合官方提供的cascade_mask_rcnn_r50_fpn_1x.py来看具体实现,关于这些配置项具体的含义可以看mmdetection的configs中的各项参数具体解释创建cascade rcnn网络先找到cascade rcnn的定...原创 2019-05-04 17:38:36 · 9193 阅读 · 4 评论 -
mmdetection源码阅读笔记(0)--创建模型
之前做天池比赛用mmdetection取得了还不错的成绩,就想仔细读读mmdetection的源码,了解下具体实现。这个系列,准备按照目标检测和实例分割的pipeline来写。训练脚本官方提供了分布式训练,并且推荐使用分布式训练,即使在单机器上dist_train.sh。#!/usr/bin/env bashPYTHON=${PYTHON:-"python3"}$PYTHON...原创 2019-05-04 17:38:11 · 7366 阅读 · 2 评论 -
AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
《AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks》是CVPR 2018 文本生成图像的文章,是StackGAN++的后续工作。Abstract在本文中作者提出了一个 Attentional Generative Ad-versarial Net...原创 2018-12-06 02:19:19 · 3419 阅读 · 4 评论 -
GAN Dissection: Visualizing and Understanding Generative Adversarial Networks
GAN Dissection: Visualizing and Understanding Generative Adversarial Networks 该论文介绍了一个可视化和理解生成网络学得结构的框架,通过定义一些可解释的单元并通过干涉这些单元来探究生成网络中的因果关系。GANpaint工具本文还提供了一个非常有意思的demo,只要鼠标划过,GAN 就可以立即在你指定的地方画出云彩、...原创 2018-12-07 17:03:46 · 2230 阅读 · 0 评论 -
Unsupervised Attention-guided Image-to-Image Translation 解读
本文和上一篇show,Attend一样,都是基于attention机制的图像转换。两篇文章的工作大体是相似的,但是这篇文章的代码开源了。这篇文章和上篇文章一样都是做图像域转换,并且在转换时都想要只关注图像中的前景,达到前景转换而背景不变的效果。 在上一篇blog中已经介绍过了图像域转换,所以这里就直接开始讲作者提出的模型了。Model Fs->t表示从S域...原创 2018-08-25 15:58:37 · 5586 阅读 · 8 评论 -
Show, Attend and Translate: Unsupervised Image Translation with Self-Regularization and Attention 解读
本文提出了一种结合Attention机制和self-Regularization的无监督图像域转换模型。问题为了解决两个域间的图像转换问题,需要学习从一个域到另一个域的映射,将X域中的图像转换到Y域。 本文的目的是使生成的图像看起来和源图像(X域)是相似的,同时具备Y域图像的特征。 如上图所示,图像从Horse域转换到了Zebra域,但是背景部分并没有变化。方法...原创 2018-08-24 15:40:54 · 3828 阅读 · 0 评论 -
Self-Attention Generative Adversarial Networks解读+部分代码
引言这篇是文章是Ian goodfellow他们的新工作,在GAN中引入Attention。 在文章的摘要中作者主要突出了三点。 Self-Attention Generative Adversarial Network(SAGAN)是一个注意力驱动,长范围 关联模型(attention-driven, long-range dependency modeling )。 传统的GA...原创 2018-08-02 16:44:01 · 8655 阅读 · 6 评论 -
Attention-GAN for Object Transfiguration in Wild Images
引言笔者前两天看到了这篇文章,因为最近也一直在看这方面就写篇博客记录一下。 这篇文章主要是结合了Attention机制来做的Object TransfigurationObject Transfiguration用传统的GAN网络做Object Transfiguration 时一般有两个步骤:检测感兴趣的目标将检测到的目标转换到另一个域于是作者将这中传统的生成网络,分...原创 2018-08-01 15:10:08 · 5527 阅读 · 0 评论 -
Learning to discover cross-domain relations with gan
Abstract人类可以在无监督的情况下轻易地发现两个东西之间的联系(或者说相同点), 而想让机器学习的话需要人类给他们配对作为ground truth然后再进行训练. 为了避免这种配对的麻烦, 提出了DiscoGANIntroduction这篇文章把”寻找两种图片的关系”变成了”用一种风格的图片生成另一种风格”(利用GAN),这是本文解决”寻找relation”的思路所在. 不需要...原创 2018-07-26 16:56:00 · 2033 阅读 · 0 评论