概率函数,概率密度函数,概率分布函数,高斯分布

数学基础 专栏收录该内容
2 篇文章 0 订阅

数学基础复习之概率论(大部分来自百度百科和课本内容)

1.概率函数:

(百度说的概率函数一般指概率分布函数,但课件里边提到概率函数时是如下意思↓)

离散型随机变量的分布的表现形式


注:截图来自同济大学概率论与数理统计课件

2.概率密度函数:

在数学中,连续型随机变量概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。

对概率密度函数作傅里叶变换可得特征函数
特征函数与概率密度函数有一对一的关系。因此知道一个分布的特征函数就等同于知道一个分布的概率密度函数。

3. 累积分布函数(分布函数)

对于所有实数   累积分布函数 定义如下:

即累积分布函数表示:对 离散变量 而言,所有小于等于a的值出现概率的和。
性质:有界性;单调性(单调增);右连续性
4.关联
分布函数是概率密度函数的积分。
对于 一维实随机变量X ,设它的 累积分布函数
   
,如果存在可测函数
   
满足:
   
,那么 X 是一个 连续型随机变量 ,并且
   
是它的概率密度函数。
连续型随机变量 的概率密度函数有如下性质:
如果概率密度函数 fX( x)在一点 x上连续,那么累积分布函数可导,并且它的 导数
 
由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。更准确来说,如果一个函数和 X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个 实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。
连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型 随机变量区间上取值的概率与这个区间是开区间还是 闭区间无关。要注意的是, 概率P{x=a}=0,但{X=a}并不是不可能事件
5.高斯分布
也称正态分布

高斯白噪声,是指噪声的概率密度函数满足正态分布统计特性,同时它的功率谱密度函数是常数的一类噪声。在通信系统的理论分析中,特别是在分析、计算系统抗噪声性能时,经常假定系统中信道噪声为高斯型白噪声。其原因在于1.高斯型白噪声可用具体数学表达式表述,便于推导分析和运算;2.高斯型白噪声确实反映了实际信道中的加性噪声情况,比较真实地代表了信道噪声的特性。

  • 1
    点赞
  • 0
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值