进化算法
文章平均质量分 82
冠切云之崔嵬
这个作者很懒,什么都没留下…
展开
-
遗传算法
CGA:1、初始化种群P(0)={x1,x2,…,xN},其中xi均为二进制数,t=0; 编码:假设变量x变化范围为[a,b],解的精度为,确定位数m:,将[a,b]等分为个区间,等分点为;产生一个染色体。 解码:二进制数B对应于十进制数,为B对应的等分点。 初始化种群:随机产生N个m位二进制数,每个二进制数与[a,b]中某个等分点一一对应。2、计算每个...原创 2018-05-10 17:21:37 · 451 阅读 · 0 评论 -
启发式算法和元启发式算法
链接:https://www.zhihu.com/question/36635796/answer/70528089启发式策略(heuristic)是一类在求解某个具体问题时,在可以接受的时间和空间内能给出其可行解,但又不保证求得最优解(以及可行解与最优解的偏离)的策略的总称。许多启发式算法是相当特殊的,依赖于某个特定问题。启发式策略在一个寻求最优解的过程中能够根据个体或者全局的经验来改变其搜...转载 2019-07-03 22:28:46 · 17728 阅读 · 2 评论 -
进化算法的应用
链接:https://www.zhihu.com/question/48510362/answer/687491112进化,是生物智能演化的原动力。 学习, 是人类文明产生的原动力,也是当下红红火火的AI进步的原动力。 如果这两种神秘的力量结合, 我们会得到一个怎样的物种呢?虽然说这方面的尝试还不多, 不过我们已经可以在一些过去人的研究中见出端倪。首先, 我们说两种算法的本质都是在做优化。...转载 2019-07-03 11:34:46 · 4849 阅读 · 0 评论 -
南大周志华、俞扬、钱超最新力作:演化学习:理论与算法进展一书导读
链接:https://mp.weixin.qq.com/s/Vlfz55iRIdldL-BIZA1y8A很多研究者已经利用演化算法来解决机器学习中的复杂最优化问题。例如,EA 可以用来优化神经网络,包括训练连接权重、结构优化和超参数优化。这种演化的人工神经网络模型能取得非常好的性能,甚至能媲美手动设计的模型。尽管演化学习已经取得了很多成功,但也很难得到机器学习社区的广泛认同,其中一个重要的原因...转载 2019-07-02 19:50:24 · 1136 阅读 · 1 评论 -
多目标优化3——自适应M2M
https://ieeexplore.ieee.org/document/7976380Our basic idea is that the population at each generation can be regarded as an approximation to the PF, and one can explicitly or implicitly estimate t...转载 2019-07-02 19:43:26 · 519 阅读 · 1 评论 -
数据+进化算法=数据驱动的进化优化?进化算法PK数学优化
链接:https://mp.weixin.qq.com/s/4OLVkewljf7o5hrC5BCmngⅠ先说一说 数据驱动进化优化的 Motivation简单来说,数据驱动的进化优化(Data-driven evolutionary computation)就是借助数据和进化算法求解优化问题。首先为什么用进化算法呢?举几个例子,一些优化问题很难获...转载 2019-07-08 14:38:20 · 1397 阅读 · 0 评论 -
进化多目标优化算法学习综述
最初,多目标优化问题→通过加权等方式转化为单目标问题→用数学规划求解。这样每次只能得到一种权值下的最优解。而且MOP的目标函数、约束函数可能是非线性、不可谓、不连续的,传统的数学规划效率低,并且它们对于权值或目标给定的次序比较敏感。进化算法:通过代与代之间维持由潜在解组成的种群来实现全局搜索。第一代EMO:采用基于非支配排序的个体选择方法和基于适应度共享机制的种群多样性保留策略。...转载 2019-03-13 17:19:23 · 11684 阅读 · 0 评论 -
多目标优化2——MOEA/D-M2M算法
M2M论文:https://ieeexplore.ieee.org/document/6595549MOP: 假设所有的独立目标函数f1,...,fm全都非负,所有的目标向量和PF都在。用户只需要在目标空间中选择K个单位方向向量,然后将目标空间进行划分为K个子区域。将原MOP转化为带约束的K个子问题,一次运行全部解决:算法流程:...原创 2018-11-26 15:56:19 · 3527 阅读 · 0 评论 -
多目标优化1——基于分解的多目标进化算法(MOEA/D)
目录1、MOEA/D的特点2、MOEA/D的分解策略3、MOEA/D的流程基于分解的多目标进化算法(Multi-objectiveEvolutionary Algorithm Based on Decomposition, MOEA/D)将多目标优化问题被转化为一系列单目标优化子问题,然后利用一定数量相邻问题的信息,采用进化算法对这些子问题同时进行优化。因为Pareto前沿面上的...翻译 2018-05-10 18:39:22 · 44647 阅读 · 2 评论 -
多目标进化算法简介
1、多目标优化的基本概念多目标优化问题(MOP)可以被表示为: subject to 其中,,Ω是决策空间,由m个目标函数组成,称为目标空间。可达到的目标集合被定义为。很多时候,由于目标彼此矛盾,Ω中的任何...原创 2018-05-10 18:19:23 · 19306 阅读 · 1 评论 -
启发式算法
链接:https://www.jianshu.com/p/e2aec624106a什么是启发式算法启发式算法一般用于解决NP-hard问题,其中NP是指非确定性多项式。例如,著名的推销员旅行问题(Travel Saleman Problem or TSP):假设一个推销员需要从南京出发,经过广州,北京,上海,…,等 n 个城市, 最后返回香港。 任意两个城市之间都有飞机直达,但票价不等...转载 2019-07-03 22:32:01 · 3268 阅读 · 0 评论