- 博客(4)
- 收藏
- 关注
原创 Datawhale打卡日记5.22
学习任务 从基础概率推导贝叶斯公式,朴素贝叶斯公式 学习先验概率 学习后验概率 学习LR和linear regreeesion之间的区别 1.推导贝叶斯公式,朴素贝叶斯公式 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1....
2019-05-25 20:11:34 140
原创 Datawhale打卡日记5.18
这段时间的学习和反思 看了本次作业,第一反应确实让我有点摸不着头脑,在和负责人(王佳旭)说了下自己的学习情况之后,负责人也是很热情的帮忙在群里提了下建议,争取更多小伙伴的意见,在这里对负责人的责任心点个赞。 作为一个刚接触机器学习的萌新,在听李宏毅老师讲课的时候,也会有很多点让我感觉到有点懵圈,可能是自己基础太差?每次看到很多人做的作业都很优秀的时候,确实让我觉得很惭愧。本次大作业让我自己实打实的...
2019-05-20 10:57:38 121
原创 Datawhale打卡日记5.16
5.14 学习打卡内容: 理解偏差和方差 学习误差为什么是偏差和方差而产生的,并且推导数学公式 过拟合,欠拟合,分别对应bias和variance什么情况 学习鞍点,复习上次任务学习的全局最优和局部最优 解决办法有哪些 梯度下降 学习Mini-Batch与SGD 学习Batch与Mini-Batch,SGD梯度下降的区别 如何根据样本大小选择哪个梯度下降(批量梯度下降,Mini-Batch) 写出...
2019-05-16 19:33:21 223
原创 Datawhale打卡日记5.13
5.12 学习打卡任务内容: 了解什么是Machine learning 学习中心极限定理,学习正态分布,学习最大似然估计 推导回归Loss function 学习损失函数与凸函数之间的关系 了解全局最优和局部最优 学习导数,泰勒展开 推导梯度下降公式 写出梯度下降的代码 学习L2-Norm,L1-Norm,L0-Norm 推导正则化公式 说明为什么用L1-Norm代替L0-Norm 学习为什么只...
2019-05-13 00:46:57 180
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人