剑指offer面试题[37]-两个链表的第一个公共结点

本文介绍了一种高效算法,用于查找两个链表的第一个公共节点。通过先计算两链表长度差,再同步移动指针,最终定位到首个相同节点。

题目描述

输入两个链表,找出它们的第一个公共结点。

/*
struct ListNode {
	int val;
	struct ListNode *next;
	ListNode(int x) :
			val(x), next(NULL) {
	}
};
*/
//思路:
//如果两个链表有公共结点,那么两个第一个公共结点后面的结点都是相同的,若链表1的长度比链表2的长度大len,
//则需要将链表1起始结点向后移动len个长度,确保两个链表初始比较结点后面的长度是一样的。

//链表的初始化其实就是链表的创建的过程,它的初始化其实和变量、
//指针的初始化一样,如果你定义了一个指针,而没有对其进行初始化,
//这个指针就是一个“野指针”,指向一块垃圾内存,这是很危险的,
//链表的初始化就是为了让程序员能够获取链表的首地址,然后对其进行插入、删除、排序等操作了!

class Solution {
public:
    ListNode* FindFirstCommonNode( ListNode* pHead1, ListNode* pHead2) {
        int len,len1,len2;
        ListNode* res=NULL;  //初始化一个链表让其为空
        if(pHead1==NULL||pHead2==NULL)   //若两个链表有一个为空,则返回空链表res  
            return res;               
        ListNode* pNode1=pHead1;    //这里很重要,计算原始两个链表的长度时,不能在原始的结点上操作
        ListNode* pNode2=pHead2;
        while(pNode1!=NULL)    //计算pHead1的长度
            {
               ++len1;
               pNode1=pNode1->next;
            }
        while(pNode2!=NULL)     //计算pHead2的长度
            {  ++len2;
               pNode2=pNode2->next;
            }
        len=(len1>len2)?(len1-len2):(len2-len1);  //pHead1与pHead2的长度差len
        if(len1>len2)             //这里的意思是,如果pHead1的长度大于pHead2的长度,将pHead1往后移动len
          {
            for(int i=0;i<len;i++)
               pHead1=pHead1->next;
          }
        else                     //如果pHead2的长度大于pHead1的长度,将pHead2往后移动len
          {
            for(int i=0;i<len;i++)
               pHead2=pHead2->next;
          }
        while(pHead1!=NULL&&pHead2!=NULL)  
          {
            if(pHead1->val!=pHead2->val)   //不相等,pHead1和pHead2分别往后移动一个长度
             {
               pHead1=pHead1->next;
               pHead2=pHead2->next;
             }
             else             //相等,将结果赋给res,并结束while循环
             {
               res=pHead1;
               break; 
             }
          }
        return res;
    }
};


【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rs勿忘初心

你的鼓励将是我持续创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值