weixin_37763870的博客

To Be Better!
私信 关注
程旭员
码龄4年

人生苦短,我用Python GitHub:https://github.com/MrLuoj

  • 83,049
    被访问量
  • 289
    原创文章
  • 12,425
    作者排名
  • 241
    粉丝数量
  • 于 2017-03-05 加入CSDN
获得成就
  • 获得773次点赞
  • 内容获得555次评论
  • 获得473次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #机器学习
TA的专栏
  • 剑指offer
    57篇
  • Sklearn
    8篇
  • Python数据结构实战
    7篇
  • PyTorch
    21篇
  • Leetcode
    83篇
  • Keras基础
    7篇
  • Tensorflow
    9篇
  • 机器学习代码实战
    16篇
  • Matplotlib
    3篇
  • 深度学习代码实战
    3篇
  • Python基础
    18篇
  • Python高阶
    2篇
  • Pandas
    6篇
  • Git分布式版本控制系统教程
    8篇
  • Numpy
    6篇
  • 多线程
    5篇
  • Linux基础
    12篇
  • 项目经历
  • Python面试题
    1篇
  • 深度学习
    3篇
  • 自然语言处理
    1篇
  • Python实战-机器学习
    5篇
  • 机器学习
    5篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

剑指offer面试题66. 构建乘积数组

题目描述给定一个数组 A[0,1,…,n-1],请构建一个数组 B[0,1,…,n-1],其中 B 中的元素 B[i]=A[0]×A[1]×…×A[i-1]×A[i+1]×…×A[n-1]。不能使用除法。思路详见链接代码class Solution: def constructArr(self, a; List[int])->List[int]: b, tmp = [1]*len(a), 1 for i in range(1, len(a)): b[i] = b[i-1]*
原创
88阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题65. 不用加减乘除做加法(位运算)

题目描述写一个函数,求两个整数之和,要求在函数体内不得使用 “+”、“-”、“*”、“/” 四则运算符号。思路详见链接代码class Solution: def add(self, a:int, b:int)->int: x = 0xffffffff a, b = a & x, b & x while b != 0: a, b = (a ^ b), (a & b) << 1 & x return a if a <=
原创
99阅读
1评论
2点赞
发布博客于 9 月前

剑指offer面试题63. 股票的最大利润(动态规划)

题目描述假设把某股票的价格按照时间先后顺序存储在数组中,请问买卖该股票一次可能获得的最大利润是多少?思路详见链接代码class Solution: def maxProfit(self, prices:List[int])->int: cost, profit = float("inf"), 0 for price in prices: cost = min(cost, price) profit = max(profit, price - cost) retur
原创
194阅读
0评论
1点赞
发布博客于 9 月前

剑指offer面试题64. 求1+2+…+n(逻辑符短路)(递归)

题目描述求 1+2+…+n ,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A?B:C)。思路详见链接代码class Solution: def __init__(self): self.res = 0 def sumNums(self, n:int)->int: n > 1 and self.sumNums(n-1) self.res += n return self.res复杂度时间复杂度 O(n)
原创
65阅读
0评论
1点赞
发布博客于 9 月前

Sklearn专题实战——针对Category特征进行分类

文章目录1.前言2.数据处理3.模型构建3.1.支持向量机3.2.贝叶斯4.网格搜索寻找最优结果5.保存模型+提取模型6.混淆矩阵查看分类效果1.前言上次回我们是对文本进行情感分类,这次将实战一个稍微复杂的Category分类,即针对每个文本分类处是属于什么类型的文本,如属于电子类、服装类等等。2.数据处理class Category: ELECTRONICS = "ELECTRONICS" BOOKS = "BOOKS" CLOTHING = "CLOTHING"
原创
172阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题61. 扑克牌中的顺子(排序)(遍历)

题目描述从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的。2~10为数字本身,A为1,J为11,Q为12,K为13,而大、小王为 0 ,可以看成任意数字。A 不能视为 14。思路详见链接代码class Solution: def isStraight(self, nums:List[int])->bool: joker = 0 nums.sort() for i in range(4): if nums[i] == 0: joker += 1
原创
79阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题58 - II. 左旋转字符串(切片)(一行代码)

题目描述字符串的左旋转操作是把字符串前面的若干个字符转移到字符串的尾部。请定义一个函数实现字符串左旋转操作的功能。比如,输入字符串"abcdefg"和数字2,该函数将返回左旋转两位得到的结果"cdefgab"。思路详见链接代码class Solution: def reverseLeftWords(self, s:str, n:int)->str: return s[n:] + s[:n]复杂度时间复杂度 O(N) : 其中 N为字符串 s 的长度,字符串切片函数为线性时间复杂
原创
62阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题58 - I. 翻转单词顺序(双指针)

题目描述输入一个英文句子,翻转句子中单词的顺序,但单词内字符的顺序不变。为简单起见,标点符号和普通字母一样处理。例如输入字符串"I am a student. “,则输出"student. a am I”。思路详见链接代码class Solution: def reverseWords(self, s:str) -> str: s = s.strip() #去除首尾空格 i = j = len(s) - 1 res = [] while i >= 0: w
原创
58阅读
1评论
1点赞
发布博客于 9 月前

Sklearn专题实战——数据处理+模型构建+网格搜索+保存(提取)模型

文章目录1.前言2.数据处理3.模型构建3.1.支持向量机3.2.决策树3.3.逻辑回归4.网格搜索寻找最优结果5.保存模型+提取模型1.前言针对Sklearn在前面已经通过代码实战讲解了其中的各个主要模块,现在将从整体的角度深度理解一下Sklearn, 本文主要以代码形式讲解,在代码中有注释,话不多说,开车!!!(请坐稳)数据链接密码:a6vy2.数据处理class Sentiment: NEGATIVE = "NEGATIVE" NEUTRAL = "NEUTRAL"
原创
190阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题55 - II. 平衡二叉树(后序遍历)(剪枝)

题目描述输入一棵二叉树的根节点,判断该树是不是平衡二叉树。如果某二叉树中任意节点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。思路详见链接代码class Solution: def isBalanced(self, root:TreeNode)->bool: def recur(root): if not root: return return 0 left = recur(root.left) if left == -1: return -1 ri
原创
62阅读
0评论
1点赞
发布博客于 9 月前

剑指offer面试题55 - I. 二叉树的深度(DFS)(递归)

题目描述输入一棵二叉树的根节点,求该树的深度。从根节点到叶节点依次经过的节点(含根、叶节点)形成树的一条路径,最长路径的长度为树的深度。思路详见链接代码class Solution: def maxDepth(self, root:TreeNode)->int: if not root: return 0 return max(self.maxDepth(root.left),self.maxDepth(root.right)) + 1复杂度时间复杂度 O(N) :
原创
64阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题54. 二叉搜索树的第k大节点(逆中序遍历)

题目描述给定一棵二叉搜索树,请找出其中第k大的节点。思路详见链接代码class Solution: def kthLargest(self, root:TreeNode, k:int)->int: def dfs(root): if not root: return dfs(root.right) if self.k == 0: return self.k -= 1 if self.k == 0: self.res = root.val
原创
61阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题52. 两个链表的第一个公共节点(双指针法)

题目描述输入两个链表,找出它们的第一个公共节点。思路详见链接代码class Solution: def getIntersectionNode(self, headA:ListNode, headB:ListNode)->ListNode: node1, node2 = headA. headB while node1 != node2: node1 = node1.next if node1 else headB node2 = node2.next if node
原创
55阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题50. 第一个只出现一次的字符(哈希表)

题目描述在字符串 s 中找出第一个只出现一次的字符。如果没有,返回一个单空格。 s 只包含小写字母。思路详见链接代码class Solution: def firstUniqueChar(self, s:str)->str: dic = {} for c in s: dic[c] = not c in dic for c in s: if dic[c]: return c return ' '时间复杂度 O(N): N为字符串 s 的长度;需遍历 s 两轮
原创
56阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题49. 丑数

题目描述我们把只包含因子 2、3 和 5 的数称作丑数(Ugly Number)。求按从小到大的顺序的第 n 个丑数。思路详见链接代码class Solution: def nthUglyNumber(self, n:int)->int: dp = [1]*n a, b, c = 0, 0, 0 for i in range(1,n): n2, n3, n5 = dp[a]*2, dp[b]*3, dp[c]*5 dp[i] = min(n2, n3, n5)
原创
107阅读
3评论
2点赞
发布博客于 9 月前

剑指offer面试题47. 礼物的最大价值(动态规划)

题目描述在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?思路详见链接代码class Solution: def maxValue(self, grid:List[List[int]])->int: m, n = len(grid), len(grid[0]) for j in range
原创
57阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题42. 连续子数组的最大和(动态规划)

题目描述输入一个整型数组,数组里有正数也有负数。数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。思路详见链接代码class Solution: def maxSubArray(self, nums:List[int])->int: for i in range(1,len(nums)): nums[i] += max(nums[i-1],0) return max(nums)复杂度时间复杂度 O(N) : 线性遍历数组
原创
66阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题40. 最小的k个数(sort函数)

题目描述输入整数数组 arr ,找出其中最小的 k 个数。例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。思路详见链接代码class Solution: def getLeastNumbers(self,arr:List[int],k:int)->List[int]: arr.sort() return arr[:k]复杂度sort()函数使用 Timsort 方法进行排序,时间复杂度O(NlogN)...
原创
69阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题36. 二叉搜索树与双向链表(中序遍历)(递归)

题目描述输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的循环双向链表。要求不能创建任何新的节点,只能调整树中节点指针的指向。思路详见链接代码#class Node:# def __init__(self, val, left=None, right=None):# self.val = val# self.left = left# self.right = right class Solution: def treeToDoublyList(self,root:'None
原创
43阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题35. 复杂链表的复制(DFS)(深拷贝)

题目描述请实现 copyRandomList 函数,复制一个复杂链表。在复杂链表中,每个节点除了有一个 next 指针指向下一个节点,还有一个 random 指针指向链表中的任意节点或者 null。思路详见链接代码class Solution: def copyRandomList(self, head:'None')->'None': visited = {} #字典 def dfs(head): if not head: return None if hea
原创
63阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题34. 二叉树中和为某一值的路径(先序遍历)(回溯)

题目描述输入一棵二叉树和一个整数,打印出二叉树中节点值的和为输入整数的所有路径。从树的根节点开始往下一直到叶节点所经过的节点形成一条路径。思路详见链接代码class Solution: def pathSum(self, root:TreeNode, sum:int)->List[List[int]]: res, path = [], [] def recur(root, tar): if not root: return path.append(root.v
原创
82阅读
2评论
2点赞
发布博客于 9 月前

剑指offer面试题30. 包含min函数的栈(辅助栈)

题目描述定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的 min 函数在该栈中,调用 min、push 及 pop 的时间复杂度都是 O(1)。思路详见链接代码class MinStack: def __init__(self): self.A, self.B = [], [] def push(self, x:int)->None: self.A.app...
原创
57阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题29. 顺时针打印矩阵(边界问题)

题目描述输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。思路详见链接代码class Solution: def spiralOrder(self, matrix:[[int]])->[int]: if not matrix: return [] l, r, t, b, res = 0, len(matrix[0])-1, 0, len(matrix)...
原创
65阅读
4评论
2点赞
发布博客于 9 月前

Python数据结构实战——数(Tree)

文章目录1.实验目标2.定义树类3.构建树并打印4.显示结果1.实验目标构建一颗如下图所示的树:2.定义树类class TreeNode: def __init__(self, data): self.data = data #树的值 self.children = [] #树的孩子结点 self.parent = N...
原创
136阅读
2评论
2点赞
发布博客于 9 月前

剑指offer面试题28. 对称的二叉树(递归)

题目描述请实现一个函数,用来判断一棵二叉树是不是对称的。如果一棵二叉树和它的镜像一样,那么它是对称的。思路详见链接代码class Solution: def isSymmetric(self, root:TreeNode)->bool: def recur(L, R): if not L and nor R: return True if not L o...
原创
58阅读
1评论
1点赞
发布博客于 9 月前

剑指offer面试题27. 二叉树的镜像(递归)

题目描述请完成一个函数,输入一个二叉树,该函数输出它的镜像。思路详见链接代码class Solution: def mirrorTree(self, root:TreeNode)->TreeNode: if not root: return tmp = root.left root.left = self.mirrorTree(root.right) r...
原创
112阅读
2评论
2点赞
发布博客于 10 月前

Pytorch专题实战——前馈神经网络(Feed-Forward Neural Network)

文章目录1.导入必要模块2.超参数设置3.数据准备4.打印部分加载的数据5.模型建立6.训练1.导入必要模块import torchimport torch.nn as nnimport torchvisionimport torchvision.transforms as transformsimport matplotlib.pyplot as plt2.超参数设置devic...
原创
512阅读
0评论
1点赞
发布博客于 10 月前

Pytorch专题实战——激活函数(Activation Functions)

文章目录1.激活函数的两种用法1.1.softmax激活函数1.2.sigmoid激活函数1.3.tanh激活函数1.4.relu激活函数1.5.leaky_relu激活函数2.用激活函数的不同方法构造函数2.1.nn.ReLU()法2.2.torch.relu()法3.可视化不同激活函数3.1.sigmoid3.2.tanh3.3.relu3.4.leaky_relu3.5.阶梯函数1.激活函...
原创
154阅读
1评论
1点赞
发布博客于 10 月前

剑指offer面试题25. 合并两个排序的链表(双指针)

题目描述输入两个递增排序的链表,合并这两个链表并使新链表中的节点仍然是递增排序的。思路详见链接代码class Solution: def mergeTwolists(self, l1:ListNode, l2:ListNode)->ListNode: cur = dum = ListNode(0) while l1 and l2: if l1.val < l...
原创
69阅读
1评论
1点赞
发布博客于 10 月前

Python数据结构实战——队列(Queue)

文章目录1.队列的性质(先进先出)2.使用deque作为队列3.使用双端队列实现Queue类1.队列的性质(先进先出)wmt_stock_price_queue = []wmt_stock_price_queue.insert(0, 131.10)wmt_stock_price_queue.insert(0, 132.12)wmt_stock_price_queue.insert(0, ...
原创
98阅读
1评论
1点赞
发布博客于 10 月前

Pytorch专题实战——交叉熵损失函数(CrossEntropyLoss )

文章目录1.用CrossEntropyLoss预测单个目标2.用CrossEntropyLoss预测多个目标3.二分类使用BCELoss损失函数4.多分类使用CrossEntropyLoss损失函数1.用CrossEntropyLoss预测单个目标loss = nn.CrossEntropyLoss() #实例化交叉熵损失函数Y = torch.tensor([0]) #预...
原创
269阅读
1评论
1点赞
发布博客于 10 月前

Python数据结构实战—栈(Stack)

文章目录1.栈的性质(后进先出)2.使用deque作为栈3.使用双端队列实现Stack类1.栈的性质(后进先出)s = [] #定义一个空数组装元素s.append('https://www.cnn.com/') #尾部添加s.append('https://www.cnn.com/world')s.append('https://www.cnn.com/india'...
原创
107阅读
3评论
3点赞
发布博客于 10 月前

Pytorch专题实战——数据转换(Dataset Transforms)

文章目录1.导入必要模块2.定义数据处理类3.定义numpy转化为tensor类4.定义乘法转化类5.打印结果5.1.未转化前5.2.tensor转化5.3.乘法转化1.导入必要模块import torchfrom torch.utils.data import Datasetimport numpy as npimport torchvision2.定义数据处理类class Wi...
原创
402阅读
1评论
2点赞
发布博客于 10 月前

剑指offer面试题24. 反转链表(双指针)

题目描述定义一个函数,输入一个链表的头节点,反转该链表并输出反转后链表的头节点。思路详见链接代码class Solution: def reverseList(self, head:ListNode)->ListNode: if not head: return None pre = None cur = head while cur: cur.ne...
原创
57阅读
2评论
2点赞
发布博客于 10 月前

剑指offer面试题17. 打印从1到最大的n位数

题目描述输入数字 n,按顺序打印出从 1 到最大的 n 位十进制数。比如输入 3,则打印出 1、2、3 一直到最大的 3 位数 999。思路详见链接代码class Solution: def printNumbers(self,n:int)->List[int]: res = [] for i in range(1,10**n): res.append(i) ...
原创
49阅读
2评论
2点赞
发布博客于 10 月前

Python数据结构实战——哈希表中的冲突处理(Collision Handling In Hash Table)

文章目录1.定义哈希类(能处理冲突)2.测试2.1.增加键值2.2.查找对应键值2.3.查看哈希表2.4.更新值2.5.删除键值对1.定义哈希类(能处理冲突)class HashTable(): def __init__(self): self.MAX = 10 self.arr = [[] for i in range(self.MAX)] #[...
原创
202阅读
2评论
2点赞
发布博客于 10 月前

Pytorch专题实战——批训练数据(DataLoader)

文章目录1.计算流程2.Pytorch构造批处理数据2.1.导入必要模块2.2.定义数据类2.3.定义DataLoader2.4.打印效果1.计算流程# Implement a custom Dataset:# inherit Dataset# implement __init__ , __getitem__ , and __len__2.Pytorch构造批处理数据2.1.导入必要...
原创
147阅读
2评论
2点赞
发布博客于 10 月前

剑指offer面试题15. 二进制中1的个数(位运算)

题目描述请实现一个函数,输入一个整数,输出该数二进制表示中 1 的个数。例如,把 9 表示成二进制是 1001,有 2 位是 1。因此,如果输入 9,则该函数输出 2。思路详见链接代码class Solution: def hammingWeight(self,n:int)->int: res = 0 while n: res += n & 1 n ...
原创
78阅读
2评论
2点赞
发布博客于 10 月前

剑指offer面试题14- I. 剪绳子(数学推导)

题目描述给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m] 。请问 k[0]k[1]…k[m] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。思路详见链接代码class Solution: def cutting...
原创
100阅读
2评论
2点赞
发布博客于 10 月前

Pytorch专题实战——逻辑回归(Logistic Regression)

文章目录1.计算流程2.Pytorch搭建线性逻辑模型2.1.导入必要模块2.2.数据准备2.3.构建模型2.4.训练+计算准确率1.计算流程 1)设计模型: Design model (input, output, forward pass with different layers) 2) 构建损失函数与优化器:Construct loss and optimizer 3) 循环...
原创
117阅读
1评论
1点赞
发布博客于 10 月前

Pytorch专题实战——线性回归(Linear Regression)

文章目录1.计算流程2.Pytorch搭建线性回归模型2.1.导入必要模块2.2.构造训练数据2.3.测试数据及输入输出神经元个数2.4.搭建模型并实例化2.5.训练1.计算流程 1)设计模型: Design model (input, output, forward pass with different layers) 2) 构建损失函数与优化器:Construct loss an...
原创
104阅读
1评论
1点赞
发布博客于 10 月前

Python数据结构实战——双向链表(DoublyLinkedList)

文章目录1.定义结点类2.定义链表类2.1.打印正向链表2.2.打印反向链表2.3.寻找链表最后一个结点2.4.计算链表长度2.5.链表首部插入元素2.6.链表尾部插入元素2.7.链表任意位置插入元素2.8.链表任意位置删除元素2.9.链表中插入一堆元素3.测试1.定义结点类class Node: def __init__(self, data=None,next=None,prev=...
原创
77阅读
1评论
1点赞
发布博客于 10 月前

Python数据结构实战——哈希表(HashTable)

文章目录1.定义哈希转换函数2.定义哈希表类2.1.不使用__setitem__2.2.使用__setitem__1.定义哈希转换函数def get_hash(key): hash = 0 for char in key: #遍历key的每一个char hash += ord(char) #计算所有char的ASCII值的和 return hash % 100 #计算ha...
原创
196阅读
1评论
1点赞
发布博客于 10 月前

Pytorch专题实战——反向传播(Backpropagation)

文章目录1.前言2.Coding1.前言大体分为三步:(1)前向传播,计算loss(2)计算局部梯度(3)反向传播,用链式求导法则计算梯度2.Codingimport torchx = torch.tensor(1.0) #指定输入xy = torch.tensor(2.0) #指定输出yw = torch.tensor(1.0, requires_grad=True...
原创
192阅读
1评论
1点赞
发布博客于 10 月前

剑指offer面试题12. 矩阵中的路径(矩阵搜索)(深度优先搜索)(剪枝)

题目描述请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一格开始,每一步可以在矩阵中向左、右、上、下移动一格。如果一条路径经过了矩阵的某一格,那么该路径不能再次进入该格子。例如,在下面的3×4的矩阵中包含一条字符串“bfce”的路径(路径中的字母用加粗标出)。[[“a”,“b”,“c”,“e”],[“s”,“f”,“c”,“s”],[“a”...
原创
44阅读
1评论
1点赞
发布博客于 10 月前

Python数据结构实战——单向链表(LinkedList)

文章目录1.定义结点类2.定义链表类2.1.打印整个链表2.2.获取链表长度2.3.链表头部插入元素2.4.链表尾部插入元素1.定义结点类class Node: def __init__(self,data=None,next=None): #传入值和指针 self.data = data #data赋值 self.next = n...
原创
206阅读
2评论
3点赞
发布博客于 10 月前

剑指offer面试题10- II. 青蛙跳台阶问题(动态规划)(递归)(斐波那契数列)

题目描述一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。思路详见链接代码class Solution: def numWays(self, n:int)->int: a, b = 1, 1 for _ in range...
原创
67阅读
2评论
2点赞
发布博客于 10 月前

剑指offer面试题10- I. 斐波那契数列

题目描述写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项。斐波那契数列的定义如下:思路详见链接代码class Solution: def fib(self,n:int)->int: a, b = 0, 1 for _ in range(n): a, b = b, a+b return a % 1000000007 ...
原创
75阅读
2评论
2点赞
发布博客于 10 月前

剑指offer面试题06. 从尾到头打印链表(辅助栈法)

题目描述输入一个链表的头节点,从尾到头反过来返回每个节点的值(用数组返回)。思路详见链接代码class Solution: def reversePrint(self,head:ListNode)->List[int]: stack = [] while head: stack.append(head.val) head = head.next retu...
原创
101阅读
2评论
2点赞
发布博客于 10 月前

剑指offer面试题05. 替换空格

题目描述请实现一个函数,把字符串 s 中的每个空格替换成"%20"。思路详见链接在 Python 和 Java 等语言中,字符串都被设计成不可变的类型,即无法直接修改字符串的某一位字符,需要新建一个字符串实现。代码class Solution: def replaceSpace(self,s:str)->str: res = [] for c in s: if ...
原创
105阅读
2评论
2点赞
发布博客于 10 月前

剑指offer面试题57 - II. 和为s的连续正数序列(双指针)(滑动窗口)

题目描述输入一个正整数 target ,输出所有和为 target 的连续正整数序列(至少含有两个数)。序列内的数字由小到大排列,不同序列按照首个数字从小到大排列。思路详见链接代码class Solution: def findContinuousSequence(self,target:int)->List[List[int]]: i, j, res = 1, 2, [...
原创
50阅读
1评论
1点赞
发布博客于 10 月前

Keras——用Keras搭建自编码神经网络(AutoEncoder)

文章目录1.前言2.用Keras搭建自编码神经网络2.1.导入必要模块2.2.数据预处理2.3.搭建模型2.4.实例化并激活模型2.5.训练2.6.可视化1.前言自编码,简单来说就是把输入数据进行一个压缩和解压缩的过程。 原来有很多 Feature,压缩成几个来代表原来的数据,解压之后恢复成原来的维度,再和原数据进行比较。它是一种非监督算法,只需要输入数据,解压缩之后的结果与原数据本身进行比...
原创
605阅读
1评论
2点赞
发布博客于 10 月前

Keras——保存和提取模型

文章目录1.前言2.保存和提取模型2.1.导入必要模块2.2.构造数据2.3.搭建模型并训练2.4.保存模型1.前言今天讲解如何保存神经网络,这样以后想要用的时候直接提取就可以。2.保存和提取模型2.1.导入必要模块import numpy as np from keras.models import Sequential #搭建模型模块from keras.layers imp...
原创
181阅读
3评论
2点赞
发布博客于 10 月前

剑指offer面试题57. 和为s的两个数字(双指针)

题目描述输入一个递增排序的数组和一个数字s,在数组中查找两个数,使得它们的和正好是s。如果有多对数字的和等于s,则输出任意一对即可。思路详见链接代码class Solution: def twoSum(self,nums:List[int],target:int)->List[int]: i, j = 0, len(nums)-1 while i<j: s ...
原创
44阅读
2评论
2点赞
发布博客于 10 月前

剑指offer面试题38. 字符串的排列(回溯)

题目描述**输入一个字符串,打印出该字符串中字符的所有排列。你可以以任意顺序返回这个字符串数组,但里面不能有重复元素。**思路详见链接代码class Solution: def permutation(self,s:str)->List[str]: c, res = list(s),[] def dfs(x): if x == len(c) - 1 re...
原创
97阅读
1评论
1点赞
发布博客于 10 月前

Keras——用Keras搭建RNN回归循环神经网络

文章目录1.前言2.用Keras搭建RNN回归循环神经网络2.1.导入必要模块2.2.超参数设置2.3.构造数据2.4.搭建模型2.5.激活模型2.6.训练+测试1.前言这次我们用循环神经网络(RNN, Recurrent Neural Networks)进行回归(Regression),主要用到LSTM RNN层。2.用Keras搭建RNN回归循环神经网络2.1.导入必要模块impor...
原创
810阅读
1评论
2点赞
发布博客于 10 月前

Keras——用Keras搭建RNN分类循环神经网络

文章目录1.前言2.用Keras搭建RNN循环神经网络2.1.导入必要模块2.2.超参数设置2.3.数据预处理2.4.搭建模型2.5.激活模型2.6.训练+测试1.前言这次我们用循环神经网络(RNN, Recurrent Neural Networks)进行分类(classification),采用MNIST数据集,主要用到SimpleRNN层。2.用Keras搭建RNN循环神经网络2.1...
原创
537阅读
2评论
3点赞
发布博客于 10 月前

Keras——用Keras搭建分类神经网络

文章目录1.前言2.用Keras搭建分类神经网络2.1.导入必要模块2.2.数据预处理2.3.搭建模型2.4.激活模型2.5.训练+测试1.前言今天用 Keras 来构建一个分类神经网络,用到的数据集是 MNIST,就是 0 到 9 这几个数字的图片数据集。2.用Keras搭建分类神经网络2.1.导入必要模块import numpy as npfrom keras.datasets i...
原创
144阅读
1评论
2点赞
发布博客于 10 月前

剑指offer面试题18. 删除链表的节点(双指针)(链表)

题目描述给定单向链表的头指针和一个要删除的节点的值,定义一个函数删除该节点。返回删除后的链表的头节点。思路详见链接代码class Solution: def deleteNode(self,head:ListNode,val:int)->ListNode: if head.val == val: return head.next pre, cur = head,...
原创
61阅读
3评论
2点赞
发布博客于 10 月前

Keras——用Keras搭建线性回归神经网络

文章目录1.前言2.用Keras搭建线性回归网络2.1.导入必要模块2.2.创建数据2.3.搭建模型2.4.激活模型2.5.训练+测试1.前言神经网络可以用来模拟回归问题 (regression),例如给一组数据,用一条线来对数据进行拟合,并可以预测新输入 x 的输出值。2.用Keras搭建线性回归网络2.1.导入必要模块import numpy as npfrom keras.mod...
原创
124阅读
1评论
1点赞
发布博客于 10 月前

Tensorflow——Dropout(解决过拟合问题)

1.前言Overfitting 也被称为过度学习,过度拟合。我们总是希望在机器学习训练时,机器学习模型能在新样本上很好的表现。过拟合时,通常是因为模型过于复杂,学习器把训练样本学得“太好了”,很可能把一些训练样本自身的特性当成了所有潜在样本的共性了,这样一来模型的泛化性能就下降了。我们形象的打个比方吧,你考试复习,复习题都搞懂了,但是一到考试就不会了,那是过拟合。2.对比drop前后的loss...
原创
93阅读
2评论
2点赞
发布博客于 10 月前

Keras——Keras简介、安装、backend

1.什么是Keras?如果说 Tensorflow 或者 Theano 神经网络方面的巨人. 那 Keras 就是站在巨人肩膀上的人. Keras 是一个兼容 Theano 和 Tensorflow 的神经网络高级包, 用他来组件一个神经网络更加快速, 几条语句就搞定了. 而且广泛的兼容性能使 Keras 在 Windows 和 MacOS 或者 Linux 上运行无阻碍.2.Keras安装...
原创
202阅读
2评论
2点赞
发布博客于 10 月前

剑指offer面试题21. 调整数组顺序使奇数位于偶数前面(双指针)

题目描述输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半部分。思路详见链接代码class Solution: def exchange(self, nums:List[int])->List[int]: i, j = 0, len(nums)-1 while i<j: while i<j a...
原创
42阅读
1评论
1点赞
发布博客于 10 月前

剑指offer面试题16. 数值的整数次方(二分法)

题目描述实现函数double Power(double base, int exponent),求base的exponent次方。不得使用库函数,同时不需要考虑大数问题。思路详见链接代码class Solution: def myPow(self,x:float,n:int)->float: if x == 0: return 0 res = 1 if n &...
原创
66阅读
1评论
1点赞
发布博客于 10 月前

Tensorflow——Tensorboard可视化

1.前言本节内容会用到浏览器, 而且与 tensorboard 兼容的浏览器是 “Google Chrome”. 使用其他的浏览器不保证所有内容都能正常显示.学会用 Tensorflow 自带的 tensorboard 去可视化我们所建造出来的神经网络是一个很好的学习理解方式. 用最直观的流程图告诉你你的神经网络是长怎样,有助于你发现编程中间的问题和疑问.2.搭建网络图纸2.1.定义输入...
原创
108阅读
4评论
4点赞
发布博客于 10 月前

Tensorflow——可视化训练过程

1.前言本节将以图像化形式展示模型训练过程,观察模型是怎样一步步拟合成最终的曲线。2.可视化训练过程2.1.导入必要模块import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt2.2.定义添加层函数def add_layer(inputs,in_size,out_size,activation...
原创
287阅读
2评论
3点赞
发布博客于 10 月前

Tensorflow——构造神经网络

1.前言这次将用代码展示怎样建造一个完整的神经网络,包括添加神经层,计算误差,训练步骤,判断是否在学习.2.构造神经网络2.1.导入模块import tensorflow as tfimport numpy as np2.2.构造添加一个神经层的函数def add_layer(inputs, in_size, out_size, activation_function=None):...
原创
79阅读
2评论
1点赞
发布博客于 10 月前

Tensorflow——add_layer(添加神经层)

1.前言在 Tensorflow 里定义一个添加层的函数可以很容易的添加神经层,为之后的添加省下不少时间.神经层里常见的参数通常有weights、biases和激励函数。2.def add_layer()首先,我们需要导入tensorflow模块。然后定义添加神经层的函数def add_layer(),它有四个参数:输入值、输入的大小、输出的大小和激励函数,我们设定默认的激励函数是Non...
原创
62阅读
2评论
2点赞
发布博客于 10 月前

剑指offer面试题09. 用两个栈实现队列(队列、栈)

题目描述用两个栈实现一个队列。队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能。(若队列中没有元素,deleteHead 操作返回 -1 )思路详见链接代码class CQueue: def __init__(self): self.A, self.B = [], [] def appen...
原创
67阅读
2评论
2点赞
发布博客于 10 月前

Tensorflow——拟合直线

1.前言Tensorflow 是非常重视结构的, 我们得建立好了神经网络的结构, 才能将数字放进去, 运行这个结构.2.创建数据首先, 我们这次需要加载 tensorflow 和 numpy 两个模块, 并且使用 numpy 来创建我们的数据....
原创
63阅读
1评论
2点赞
发布博客于 10 月前

Tensorflow——placeholder(矩阵运算小实例)

1.前言这次我们讲 Tensorflow 中的 placeholder , placeholder 是 Tensorflow 中的占位符,暂时储存变量.2.矩阵计算Tensorflow 如果想要从外部传入data, 那就需要用到 tf.placeholder(), 然后以这种形式传输数据 sess.run(***, feed_dict={input: **}).import tensorf...
原创
134阅读
1评论
1点赞
发布博客于 10 月前

Tensorflow——Variable变量(打印数字小实例)

1.前言在 Tensorflow 中,定义了某字符串是变量,它才是变量,这一点是与 Python 所不同的。定义语法: state = tf.Variable()2.打印数字小实例import tensorflow as tfstate = tf.Variable(0,name='counter') #变量one = tf.constant(1) #常量new_v...
原创
352阅读
1评论
1点赞
发布博客于 10 月前

Tensorflow——Session机制(矩阵相乘小实例)

1.前言Session 是 Tensorflow 为了控制,和输出文件的执行的语句. 运行 session.run() 可以获得你要得知的运算结果, 或者是你所要运算的部分.2.计算矩阵乘积首先,我们这次需要加载 Tensorflow ,然后建立两个 matrix ,输出两个 matrix 矩阵相乘的结果。因为 product 不是直接计算的步骤, 所以我们会要使用 Session 来激活...
原创
39阅读
1评论
2点赞
发布博客于 10 月前

机器学习代码实战——网格搜索和交叉验证(GridSearchCV)

文章目录1.实验目的2.导入必要模块并读取数据3.构建模型-参数字典4.训练5.打印不同模型、不同参数对应的结果1.实验目的(1)运用GridSearchCV比较不同的模型、不同的参数对实验结果的影响。(2)运用字典存储模型和参数(3)实验所用数据集为sklearn自带的手写数字数据集2.导入必要模块并读取数据from sklearn import datasetsfrom skle...
原创
411阅读
3评论
3点赞
发布博客于 10 月前

Tensorflow——Tensorflow的用途、安装、数据流图

1.前言最近几年火起来的机器学习有没有让你动心呢? 学习 google 开发定制的 tensorflow, 能让你成为机器学习, 神经网络的大牛,同时也会在海量的信息当中受益匪浅.2.TensorFlow有何用?TensorFlow是Google开发的一款神经网络的Python外部的结构包, 也是一个采用数据流图来进行数值计算的开源软件库.TensorFlow 让我们可以先绘制计算结构图, ...
原创
90阅读
1评论
2点赞
发布博客于 10 月前

剑指offer面试题07. 重建二叉树(递归)(切片)

题目描述输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。思路详见链接代码#class TreeNode:# def __init__(self,x):# self.val = x# self.left = None# self.right = Noneclass Solution: def buildTr...
原创
29阅读
2评论
2点赞
发布博客于 10 月前

剑指offer面试题68 - II. 二叉树的最近公共祖先(递归)

题目描述给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]思路详见链接代码class Sol...
原创
51阅读
2评论
2点赞
发布博客于 10 月前

机器学习代码实战——朴素贝叶斯(实现垃圾邮件分类)

文章目录1.实验目的2.导入必要模块并读取数据3.训练+预测4.使用Sklearn Pipeline方法1.实验目的(1)分析邮件数据并对数据进行预处理(2)运行朴素贝叶斯模型对邮件进行分类数据链接密码:bwfa2.导入必要模块并读取数据import pandas as pddf = pd.read_csv('spam.csv')df.head()df['spam'] =...
原创
218阅读
1评论
1点赞
发布博客于 10 月前

机器学习代码实战——逻辑回归(Logistic Regression)

文章目录1.实验目的2.导入必要模块并读取数据3.可视化分析数据4.数据预处理5.训练+预测1.实验目的(1)对数据进行分析,以找出哪些变量对员工保留有直接和明显的影响(即它们是离开公司还是继续工作)(2)绘制条形图,显示员工工资对保留率的影响绘制条形图,显示部门和员工保留之间的相关性(3)构建逻辑回归模型并计算模型的准确性2.导入必要模块并读取数据import pandas as ...
原创
66阅读
1评论
1点赞
发布博客于 10 月前

机器学习代码实战——拆分训练集与测试集(train_test_split)

文章目录1.实验目的2.导入必要模块并读取数据1.实验目的我们有一个包含二手宝马车价格的数据集。 我们将分析此数据集,并建立一个可以通过以汽车的行驶里程和车龄作为输入来预测价格的预测函数。 我们将使用sklearn train_test_split方法拆分训练和测试数据集数据链接密码:n3dp2.导入必要模块并读取数据import pandas as pdimport matplot...
原创
647阅读
3评论
3点赞
发布博客于 10 月前

机器学习代码实战——梯度下降(gradient descent)

文章目录1.实验目的2.梯度下降2.1.借助sklearn库2.2.手写梯度下降函数1.实验目的本实验将使用两种方法实现梯度下降算法并可打印出参数,可视化梯度下降过程。第一种方法是借助sklearn库,第二种方法是手写梯度下降函数。数据链接密码:faxo2.梯度下降2.1.借助sklearn库import numpy as npimport pandas as pdfrom sk...
原创
131阅读
1评论
1点赞
发布博客于 10 月前

剑指offer面试题68 - I. 二叉搜索树的最近公共祖先(递归)(二叉搜索树)

题目描述给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]思路详见链接代码class...
原创
40阅读
1评论
1点赞
发布博客于 10 月前

机器学习代码实战——线性回归(多变量)(Linear Regression)

文章目录1.实验目的2.导入必要模块并读取数据3.对数据进行处理3.1.experience字段数字化3.2.test_score(out of 10)字段NaN替换为平均数4.训练+预测1.实验目的在hiring.csv中,包含公司的招聘信息,例如候选人的工作经验,笔试成绩和个人面试成绩。 基于这三个因素,人力资源将决定工资。 有了这些数据,您需要为人力资源部门建立一个机器学习模型,以帮助他...
原创
56阅读
3评论
2点赞
发布博客于 10 月前

机器学习代码实战——线性回归(单变量)(Linear Regression)

文章目录1.实验目的2.导入必要模块并读取数据3.画当前数据分布散点图4.提取数据和标签5.训练+预测1.实验目的使用线性回归模型预测2020年加拿大公民的人均收入。数据链接密码:zc6h2.导入必要模块并读取数据import numpy as npimport pandas as pdfrom sklearn.linear_model import LinearRegressio...
原创
36阅读
1评论
1点赞
发布博客于 10 月前

Linux课件汇总.ppt

(1)Linux历史 (2)Linux基本命令 (3)Linux操作代码 53页ppt涵盖了Linux操作的基础知识,建议边操作边学。
ppt
发布资源于 10 月前

剑指offer面试题53 - II. 0~n-1中缺失的数字(二分查找)

题目描述一个长度为n-1的递增排序数组中的所有数字都是唯一的,并且每个数字都在范围0~n-1之内。在范围0~n-1内的n个数字中有且只有一个数字不在该数组中,请找出这个数字。思路详见链接代码class Solution: def missingNumber(self,nums:List[int])->int: i, j = 0, len(nums)-1 while i ...
原创
54阅读
1评论
2点赞
发布博客于 10 月前

机器学习代码实战——保存和加载模型(Save and Load Model)

文章目录1.实验目的2.保存与加载模型2.1.pickle方法2.2.joblib方法1.实验目的每当我们训练完一个模型后,我们需要保存训练好的模型留给下次用或者再次训练,因此我将给出两种保存模型的方法,都很简单。数据链接密码:35m92.保存与加载模型2.1.pickle方法import pandas as pdimport numpy as npfrom sklearn.li...
原创
263阅读
0评论
0点赞
发布博客于 10 月前

机器学习代码实战——K折交叉验证(K Fold Cross Validation)

文章目录1.实验目的2.导入数据和必要模块3.比较不同模型预测准确率3.1.逻辑回归3.2.决策树3.3.支持向量机3.4.随机森林1.实验目的使用sklearn库中的鸢尾花数据集,并针对以下模型使用cross_val_score来衡量每个模型的性能。 最后找出性能最佳的模型。(1)逻辑回归(2)支持向量机(3)决策树(4)随机森林2.导入数据和必要模块from sklearn.d...
原创
1692阅读
1评论
3点赞
发布博客于 10 月前

GIT从入门到精通.pptx

81页ppt详细介绍如何使用Git进行版本控制,有详细的代码和图片描述,跟着ppt实战操作,整个流程下来收获巨大。
pptx
发布资源于 10 月前

剑指offer面试题53 - I. 在排序数组中查找数字 I(二分查找)

题目描述统计一个数字在排序数组中出现的次数。思路详见链接代码class Solution: def search(self,nums:[int],target:int)->int: i, j = 0, len(nums)-1 while i <= j: m = (i+j)//2 if nums[m] <= target: i = m+1...
原创
91阅读
4评论
4点赞
发布博客于 10 月前

机器学习代码实战——随机森林(Random Forest)

文章目录1.实验目的2.导入数据、构建df、拆分特征与标签3.训练+计算得分3.1.计算10颗树时的得分3.2.计算40颗树时的得分1.实验目的1、使用随机森林分类器预测花卉种类,数据集来自sklearn.datasets的著名鸢尾花数据集。2、使用默认的n_estimators(10)测量预测分数3、通过更改分类器中的树的个数来微调模型,并检验使用几棵树可获得的最佳分数2.导入数据、构...
原创
310阅读
2评论
4点赞
发布博客于 10 月前

Matplotlib——多图合并

文章目录1.多图合一(subplot)1.多图合一(subplot)matplotlib 是可以组合许多的小图, 放在一张大图里面显示的. 使用到的方法叫作 subplot.使用import导入matplotlib.pyplot模块, 并简写成plt. 使用plt.figure创建一个图像窗口.使用plt.subplot来创建小图. plt.subplot(2,2,1)表示将整个图像窗口分...
原创
782阅读
1评论
1点赞
发布博客于 10 月前

Matplotlib——画图(散点图、柱状图、等高线图、3D图)

文章目录1.画散点图1.画散点图首先,先引入matplotlib.pyplot简写作plt,再引入模块numpy用来产生一些随机数据。生成100个呈标准正态分布的二维数据组 (平均数是0,方差为1) 作为一个数据集,并图像化这个数据集。每一个点的颜色值用T来表示:import matplotlib.pyplot as pltimport numpy as npX = np.random...
原创
709阅读
3评论
9点赞
发布博客于 10 月前

剑指offer面试题48. 最长不含重复字符的子字符串(滑动窗口)

题目描述请从字符串中找出一个最长的不包含重复字符的子字符串,计算该最长子字符串的长度。思路详见链接代码class Solution: def lengthOfLongestSubstring(self,s): result = 0 low = 0 for high in range(len(s)): if s[high] not in s[low:high]: ...
原创
239阅读
2评论
3点赞
发布博客于 10 月前

剑指offer面试题41. 数据流中的中位数(二分查找)

题目描述如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。例如,[2,3,4] 的中位数是 3[2,3] 的中位数是 (2 + 3) / 2 = 2.5设计一个支持以下两种操作的数据结构:void addNum(int num) - 从数据流中添加一个...
原创
172阅读
1评论
1点赞
发布博客于 10 月前

机器学习代码实战——One-Hot编码(独热编码)

文章目录1.实验目的2.训练+预测2.1.get_dummies方法2.2.OneHotEncoder方法1.实验目的根据csv文件已给属性(Car Model、Mileage、Sell Price($)、Age(yrs))来预测汽车售价。下面将给出两种预测onehot编码方法,其中模型用LinearRegression。汽车数据密码:7izi2.训练+预测2.1.get_dummie...
原创
526阅读
1评论
1点赞
发布博客于 10 月前

机器学习代码实战——决策树(预测泰坦尼号船员生存情况)

文章目录1.实验目的2.数据预处理3.导入必要模块4.训练+计算模型得分1.实验目的1、建立决策树模型以根据某些参数预测泰坦尼克号人是否得以生存2、在泰坦尼克数据中,使用以下各列构建一个模型来预测人是否可以生存(1)Pclass(2)Sex(3)Age(4)Fare3、计算模型得分泰坦尼克数据密码:8azq2.数据预处理import pandas as pddf = p...
原创
1027阅读
3评论
2点赞
发布博客于 10 月前

Matplotlib——基本用法

文章目录1.画一个简单的图1.画一个简单的图使用import导入模块matplotlib.pyplot,并简写成plt 使用import导入模块numpy,并简写成npimport matplotlib.pyplot as pltimport numpy as np使用np.linspace定义x:范围是(-4,4);个数是20. 仿真一维数据组(x ,y)表示曲线.x = np.l...
原创
983阅读
3评论
9点赞
发布博客于 10 月前

机器学习代码实战——SVM(支持向量机)(使用不同核函数)

文章目录1.实验目的2.导入必要模块3.用pandas处理数据4.拟合+预测4.1.使用rbf核函数4.2.使用linear核函数1.实验目的1.使用sklearn的digits数据集(即从sklearn.datasets导入load_digits)2.训练SVM分类器,然后,使用诸如rbf和linear的不同内核来测量模型的准确性。3. 使用正则化和伽玛参数进一步调整模型,并尝试获得最高...
原创
495阅读
2评论
2点赞
发布博客于 10 月前

剑指offer面试题39. 数组中出现次数超过一半的数字(数组)(摩尔投票法)

题目描述**数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。你可以假设数组是非空的,并且给定的数组总是存在多数元素。**思路详见链接代码class Solution: def majorityElement(self,nums:List[int])->int: votes = 0 for num in nums: x = num votes ...
原创
108阅读
2评论
2点赞
发布博客于 10 月前