- 博客(126)
- 收藏
- 关注
原创 ALTER TABLE DDL详细流程
摘要:Debezium通过MySqlAntlrDdlParser解析ALTERTABLE语句,使用AlterTableParserListener处理表结构变更。典型流程包括:解析表名(inventory.customers)、创建列定义(phone VARCHAR(255))、更新表结构,最终通过EventDispatcher发送schema变更事件到Kafka。关键类分工明确,Parser解析SQL语法,Listener处理具体变更类型,TableEditor维护表结构。
2025-06-02 16:55:41
24
原创 CREATE TABLE DDL详细流程
Debezium解析MySQL DDL语句的流程详解:通过ANTLR将CREATE TABLE语句解析为语法树,利用ParseTreeWalker遍历触发各监听器回调(CreateTableParserListener初始化表结构,ColumnDefinitionParserListener解析列定义,AlterTableParserListener设置主键)。最终TableEditor构建完整表结构,由EventDispatcher将schema变更事件以JSON格式发送至KafkaConnect。
2025-06-02 16:41:11
288
原创 MySQL DDL语句的解析原理
Debezium解析MySQL DDL语句的流程:通过ANTLR语法树分析SQL语句,使用特定监听器处理不同类型的DDL操作(如创建/修改表、删除表等),最终将表结构变化同步到Kafka Connect Schema Registry。核心组件包括解析器、监听器和表编辑器,支持从创建表到修改字符集等多种DDL操作,每种操作对应特定的Kafka事件类型。系统通过事件驱动方式实现实时数据库结构变更捕获,并允许通过继承监听器类来自定义解析逻辑。该机制为MySQL数据库结构变更提供了完整的捕获和同步解决方案。
2025-06-02 12:41:06
28
原创 MySqlStreamingChangeEventSource类分析
本文梳理了MySQL CDC工具Debezium中MySqlStreamingChangeEventSource类处理INSERT、UPDATE和DELETE操作的完整流程。对于每种操作,均从MySQL binlog生成事件开始,经过BinaryLogClient接收分发,通过handleEvent判断类型并调用对应处理器,最终生成KafkaConnect事件并更新偏移量。INSERT操作输出新增数据,UPDATE包含前后值对比,DELETE仅保留删除前数据。
2025-06-02 12:12:54
254
原创 Java 系统卡顿 / 卡住 / CPU 飙高:完整分析方式 + 实战案例解析
本文针对Java系统常见的卡顿、死锁和CPU飙高问题,提供了一套完整的分析方法和实战案例。主要分析工具包括jstack、jstat、jmap和MAT,通过逐步排查GC情况、线程状态和内存使用来定位问题根源。 实战案例模拟了CPU飙高场景,通过4个线程的无限循环计算触发问题,并使用top、jstat、jstack和VisualVM等工具逐步分析。最终确定是计算密集型任务导致CPU占用过高,并提出了优化建议。 文章还汇总了6类常见性能问题的表现和分析方法,包括计算密集型任
2025-06-02 11:39:00
871
原创 系统性地梳理Java GC日志
Java GC日志分析与内存泄漏排查指南 GC日志记录了JVM垃圾回收的关键信息,包括回收时间、内存变化、收集器类型等,是排查内存问题的重要工具。JDK8及之前版本可通过-XX:+PrintGCDetails开启日志,JDK9+则采用Xlog参数。日志分析需关注GC频率、停顿时间、内存回收效果等指标,特别是Full GC频繁、老年代持续增长、内存回收不彻底等现象,往往暗示内存泄漏。通过实际案例演示,可观察到从初期正常回收,到中期对象晋升老年代,最终Full GC频繁但内存居高不下的典型泄漏特征。结合GCVi
2025-06-02 11:25:47
742
原创 ThreadLocal原理
摘要: ThreadLocal是Java提供的线程本地存储机制,每个线程拥有独立的变量副本,避免线程间共享问题。其核心原理是每个线程维护一个ThreadLocalMap,以ThreadLocal实例为弱引用Key存储值。关键方法包括set()、get()和remove(),其中remove()用于防止内存泄漏。完整示例展示了多线程环境下ThreadLocal的隔离特性:主线程初始值为0,线程A和B分别设置值100和200,最终各线程独立读写且清理资源。通过ThreadLocal.withInitial()设
2025-06-02 11:17:44
1138
原创 ThreadPoolExecutor.shutdown()方法的流程逻辑
线程池 shutdown() 方法详解 ThreadPoolExecutor.shutdown() 方法用于有序关闭线程池: 1️⃣ 状态转换:将线程池状态从 RUNNING 改为 SHUTDOWN,不再接收新任务 2️⃣ 中断空闲线程:通过 interruptIdleWorkers() 中断等待任务的线程 3️⃣ 后续处理:调用 tryTerminate() 检查是否所有任务/线程已完成,最终进入 TERMINATED 状态 关键区别 📌 ▪ shutdown():继续执行队列任务,不中断运行中线程 ▪
2025-06-02 10:54:43
812
原创 ThreadPoolExecutor.execute(Runnable command) 方法的完整执行流程
本文详细解析了 ThreadPoolExecutor.execute(Runnable command) 方法的完整执行流程。该方法通过 ctl 状态变量判断线程池运行情况,按照核心线程数→任务队列→非核心线程的顺序处理任务提交。当核心线程未满时直接创建线程执行任务;否则尝试入队,并在队列满后尝试创建非核心线程。若所有途径均失败,则触发拒绝策略。源码分析展示了状态检查、线程创建、队列管理和拒绝处理的关键逻辑,并附流程图说明整体控制流程。该方法体现了线程池"核心线程优先→队列缓冲→弹性扩容→拒绝保护
2025-06-02 10:45:06
889
原创 基于对象大小的队列
摘要:本文提出一种基于对象字节大小的阻塞队列(SizeBasedBlockingQueue),用于解决传统队列按元素个数控制内存的不足。该方案通过装饰器模式封装原生队列,使用jol-core工具动态计算对象内存占用,在put/take操作时维护原子计数器,当超过最大字节阈值时自动阻塞生产者线程。设计包含完整类结构、流程图和代码实现,支持自定义对象大小估算策略,适用于数据库迁移等需要精确控制内存缓存的场景。(149字)
2025-06-01 22:55:57
809
原创 Java 内存控制框架设计与实现方案
《Java 内存监控框架设计与实现》 摘要:本文介绍了一个低侵入式的Java内存监控框架MemoryMonitor,主要功能包括:1)实时监控JVM堆内存使用情况;2)跟踪集合类(Map/List/Set)的大小和内存占用;3)检测大对象并报警;4)支持Prometheus监控和Web UI展示。该框架采用模块化设计,包含内存采样模块(MemorySampler)、集合监控中心(CollectionMonitor)、对象大小估算工具(ObjectSizeUtil)和报警系统(MemoryAlertSyste
2025-06-01 22:40:35
794
原创 基于生产者-消费者模式的框架,用于顺序读取 MySQL Binlog文件
本文介绍了一个基于生产者-消费者模型的binlog处理系统架构设计。系统由三个核心模块组成:BinlogReader作为生产者顺序读取binlog文件并解析事件;BlockingQueue作为缓冲队列实现模块解耦;BinlogProcessor作为消费者多线程处理事件。架构具备顺序读取、多线程消费、扩展性强等特点,支持未来接入Kafka等消息中间件。文中还提供了详细的流程图和Java代码实现,包括事件封装类、生产者、消费者以及主程序的完整代码结构,展示了binlog从读取到处理的完整流程。
2025-06-01 22:23:38
728
原创 socketTimeout(即 readTimeout)详解
摘要: 本文详细解析了数据库访问中的 socketTimeout(即 readTimeout)概念,它是客户端等待数据库返回数据的最大时间,若超时则抛出异常。文章通过流程图和代码示例说明其在数据库交互中的位置与作用,并与 connectTimeout、queryTimeout 对比区分。 关键点包括: socketTimeout 控制客户端接收数据的时间,适用于查询结果传输或网络延迟场景; 其与数据库执行时间(queryTimeout)和连接建立时间(connectTimeout)相互独立; 结合实际案例(
2025-06-01 22:13:39
963
原创 connectTimeout vs queryTimeout vs socketTimeout 详解
摘要:本文详细解析了数据库连接中的三种关键超时机制:connectTimeout(连接超时)、queryTimeout(查询超时)和socketTimeout/readTimeout(网络读取超时)。通过对比表格展示核心区别,用餐厅点餐的比喻形象说明三者的作用差异,并绘制JDBC请求流程图展示超时触发阶段。文章包含完整的Java代码示例模拟各种超时场景,分析每种超时的具体表现和异常输出。最后对比了不同数据库的超时支持情况,并给出实际开发中的配置建议。三种超时机制分别保护"连接建立→SQL执行→结果
2025-06-01 21:08:41
731
原创 Java 应用中常见的各种“超时”机制详解
Java应用中的超时机制详解:文章系统梳理了各类超时场景及配置方式,包括数据库(连接/查询/事务超时)、网络(Socket/HTTP超时)、并发(线程/锁/Future超时)以及微服务/RPC等场景。重点分析了超时原理、配置方法(通过JDBC、Spring、HttpClient等方式)和典型异常处理,并提供了最佳实践建议。所有超时机制的核心目标在于保护系统资源,防止慢请求影响整体性能,开发者应根据业务场景合理设置不同层级的超时参数。
2025-06-01 20:58:31
631
原创 ConcurrentHashMap原理与核心源码详解
📌 Java 并发编程:ConcurrentHashMap 核心解析 ConcurrentHashMap 是线程安全的哈希表实现,采用 数组+链表/红黑树 结构,通过 CAS+synchronized 实现高效并发(JDK8)。与 HashMap 相比,它支持并发扩容、禁止 null 键值,锁粒度更细(桶级别)。JDK8 优化了 JDK7 的分段锁机制,引入红黑树提升查询效率。核心方法如 put() 通过 synchronized 锁定头节点,get() 无锁读取。适用缓存、计数器等高并发场景,需注意键值
2025-06-01 20:45:43
951
原创 BlockingQueue 原理与 ArrayBlockingQueue 核心源码详解
摘要: BlockingQueue是Java并发包中支持阻塞操作的队列接口,常见实现包括ArrayBlockingQueue(数组结构、有界)、LinkedBlockingQueue(链表结构、可选有界)和PriorityBlockingQueue(优先级排序)。以ArrayBlockingQueue为例,其通过ReentrantLock和两个Condition(notEmpty/notFull)实现线程安全,采用环形数组存储数据,put()方法在队列满时阻塞生产者线程,take()在队列空时阻塞消费者线程
2025-06-01 20:33:51
834
原创 线程池的源码流程讲解
本文通过一个完整的ThreadPoolExecutor示例,系统讲解了线程池的工作原理。从任务提交、线程创建、任务队列管理,到拒绝策略和线程回收,配合源码解析和流程图,清晰展现了线程池的运行机制。示例中:任务0-1直接分配线程,任务2-3进入队列,任务4-5扩容线程,任务6-7被拒绝。最终核心线程保持活跃,非核心线程空闲回收。整个过程覆盖了线程池的核心状态变化和执行逻辑,是理解Java线程池的绝佳实践案例。
2025-06-01 20:11:15
947
原创 CountDownLatch、CyclicBarrier、ReentrantLock 和 Semaphore完整的AQS队列流程图
本文介绍了四种基于AQS的同步器的实现流程与简化版模拟代码: AQS核心结构:通过简化版SimpleAQS类展示了队列同步器的基本框架,包括状态管理、CLH队列和线程阻塞/唤醒机制。 四种同步器分析: CountDownLatch:使用state作为计数器,countDown()递减至0时唤醒等待线程 CyclicBarrier:通过Condition队列实现线程屏障,达到指定数量后全部唤醒 ReentrantLock:state记录持有锁次数,非公平竞争锁资源 Semaphore:state表示可用许可数
2025-06-01 19:50:52
434
原创 以CyclicBarrier为例详述AQS底层的流转过程
本文通过两个线程调用CyclicBarrier.await()的示例,详细分析了AQS(AbstractQueuedSynchronizer)在CyclicBarrier中的底层实现机制。文章首先回顾了AQS的核心组件,然后分五个阶段图解了线程状态流转过程:初始状态→T1调用await()进入等待→T2调用await()触发唤醒→T1被唤醒→T2被唤醒。整个过程展示了Condition队列与CLH同步队列之间的转换,以及state值的变化。总结中归纳了AQS在CyclicBarrier中的关键作用机制,并提
2025-06-01 19:36:50
851
原创 CyclicBarrier的线程流转图
本文深入解析了CyclicBarrier的实现机制及其底层AQS原理。CyclicBarrier通过ReentrantLock和Condition实现线程同步,核心流程包括线程等待、屏障触发和唤醒机制。AQS作为基础同步框架,采用CLH队列管理线程状态,支持公平/非公平锁策略。文章详细对比了CyclicBarrier、CountDownLatch和Semaphore的特性差异,并提供了源码分析和调试建议。通过两个线程的状态流转示例,直观展示了CyclicBarrier与AQS的协作原理。
2025-06-01 19:30:25
856
原创 AbstractQueuedSynchronizer (AQS) 原理详解
AQS是Java并发包的核心组件,用于实现锁和同步器。它通过CLH队列管理等待线程,支持独占和共享两种模式,提供获取/释放锁的模板方法。ReentrantLock、CountDownLatch等工具类都基于AQS实现。AQS采用自旋优化和队列优化策略,兼顾性能和公平性。开发者可通过继承AQS自定义同步器,但需注意避免死锁和性能问题。理解AQS是掌握Java并发编程的关键。
2025-06-01 17:20:42
898
原创 Debezium快照事件监听器系统设计
Debezium快照事件监听器系统设计旨在为Debezium的快照过程提供可扩展的事件监听机制,允许外部系统在快照过程中执行自定义逻辑。系统核心功能包括表快照开始、完成及行数据处理事件的监听,支持多个监听器同时工作,并确保异常不会影响主快照流程。系统架构主要由SnapshotEventListener接口和SnapshotEventListenerManager类组成,前者定义事件回调接口,后者管理监听器生命周期并提供线程安全的事件分发。实现细节中,系统使用CopyOnWriteArrayList确保线程安
2025-05-18 20:53:02
1027
原创 内存安全设计方案
本文探讨了内存安全设计方案,重点分析了常见内存问题及其场景,并提出了相应的架构设计和优化措施。常见内存问题包括内存泄漏、内存溢出和GC频繁,主要涉及单例模式、缓存管理、队列处理和并发控制等场景。架构设计方面,提出了数据采集、处理和存储的分层架构,并引入了内存管理器、缓存管理器和队列管理器等核心组件。优化措施包括单例模式优化、缓存优化和队列优化,通过弱引用、内存管理和批量处理等手段提升系统性能。最后,强调了内存监控和告警机制的重要性,通过定期检查内存使用、GC状态和队列状态,及时发送告警,确保系统稳定运行。
2025-05-14 21:17:09
1273
原创 Debezium RelationalSnapshotChangeEventSource详解
RelationalSnapshotChangeEventSource是Debezium中用于关系型数据库快照的核心抽象类,主要负责数据快照、模式捕获、事务管理和事件分发。其核心功能包括锁定表、读取表结构、确定快照偏移量、创建模式变更事件和数据事件,并将这些事件分发到Kafka。该类的实现采用了模板方法模式,定义了快照的通用流程,具体步骤由子类实现。此外,策略模式用于定义不同的快照策略(如仅模式快照或数据快照),观察者模式则用于监听快照进度。实际应用中,MySQL和PostgreSQL等数据库通过继承该类实
2025-05-09 22:22:48
735
原创 Debezium BinaryLogClient详解
详细解释了BinaryLogClient类的作用、功能和技术实现,特别关注连接保活机制和连接中断的情况
2025-05-07 22:24:16
1041
原创 GTID(全局事务标识符)的深入解析
GTID 在 Debezium 中扮演了 精确同步导航器 的角色,通过全局唯一的事务标识符,解决了传统 binlog 位置管理的痛点。对于需要高可靠性、自动化运维的 CDC 场景,启用 GTID 是必选项。它能显著降低运维复杂度,确保数据一致性,是实时数据管道设计的基石之一。
2025-05-04 22:42:56
1043
原创 Debezium Binlog解析与事件转换流程详解
Debezium通过精细的事件解析和转换流程,将MySQL的Binlog事件转换为统一的变更事件格式。整个过程涉及多个关键组件和数据结构,需要特别注意事务边界和特殊事件的处理。通过合理的配置和监控,可以确保数据变更的可靠捕获和传输。
2025-05-04 15:18:51
914
原创 Debezium 架构详解与实战示例
Debezium提供了一个强大而灵活的CDC解决方案,通过其模块化的架构设计,可以轻松实现数据库变更的捕获和处理。本文通过详细的架构图、流程图和具体示例,展示了Debezium的核心组件和工作原理
2025-05-04 10:03:48
830
原创 Debezium Schema History Recovery 机制详解
在 Debezium 中,准确地恢复和维护数据库的 schema 历史记录对于确保数据捕获的正确性至关重要。本文将详细介绍 Debezium 如何实现这一机制.
2025-01-30 20:55:04
1543
原创 Debezium EmbeddedEngine 设计文档
EmbeddedEngine的设计展现了优秀的软件工程实践,通过清晰的职责划分、灵活的扩展机制和可靠的数据处理保证,为构建高质量的变更数据捕获系统提供了强大的支持。其模块化的设计和优雅的实现值得学习和借鉴。
2025-01-26 20:19:01
837
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人