
推荐系统
文章平均质量分 77
lpty
走进科学
展开
-
推荐系统之隐语义模型(LFM)
一 基本概念LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型。那这种模型跟ItemCF或UserCF有什么不同呢?这里可以做一个对比:对于UserCF,我们可以先计算和目标用户兴趣相似的用户,之后再根据计算出来的用户喜欢的物品给目标用户推荐物品。而ItemCF,我们可以根据目标用户喜欢的物品,寻找和这些物品相似的物品,再推荐给用户原创 2016-10-30 23:58:56 · 31078 阅读 · 27 评论 -
推荐系统之UserCF2:用户对商品的感兴趣程度
基于用户的协同过滤,从定义来说,可以分为以下两步进行:一、找到和目标用户兴趣相似的用户集合二、找和这个集合中的用户喜欢的,且目标用户没有听说过的物品推荐给目标用户在上一篇已经介绍过了如何计算与目标用户最相似的K个用户,接下来就是第二步,推荐商品了。计算用户对商品的感兴趣程度,我们用下面的公式来求解:其中u代表用户,i代表商品,S(u,k)包含和用原创 2016-10-06 19:16:44 · 7185 阅读 · 1 评论 -
推荐系统之UserCF1:用户相似度
协同过滤是什么,从字面理解就是通过许多用户持续与网站互动,来达到筛选的目的。也就是说,这是一个基于用户行为数据分析的算法。首先介绍一下用户行为数据,在一个网站上,用户的行为数据一般指的就是用户在浏览网站后留在服务器上的访问日记,大概可以分为这么几类:浏览、点击、购买、评分、评论、分享等等。协同过滤算法可以有多个方法来实现,像基于邻域的方法,隐语义模型,基于图的随机游走等,接下来的内容选用的原创 2016-10-05 18:50:47 · 11996 阅读 · 8 评论 -
推荐系统学习之评测指标
最近开始学习推荐系统,特记录一下学习过程并做个分享。推荐系统是什么不用多说,这里先介绍一下推荐系统的各种评测指标。1、用户满意度这个指标应该是最能体现一个推荐系统好坏的指标,但获取只能通过用户在线的反馈,类似用户问卷调查,或者用户对推荐物品的行为,比如购买、收藏、评分等判别。2、预测准确度在离线预测用户行为的评价上,这个指标相当重要。在统计学习中,也就是根据训练数据集学习得到的原创 2016-09-29 21:43:29 · 3929 阅读 · 0 评论 -
推荐系统之基于图的推荐:基于随机游走的PersonalRank算法
一 基本概念基于图的模型是推荐系统中相当重要的一种方法,以下内容的基本思想是将用户行为数据表示为一系列的二元组,每一个二元组(u,i)代表用户u对物品i产生过行为,这样便可以将这个数据集表示为一个二分图。假设我们有以下的数据集,只考虑用户喜不喜欢该物品而不考虑用户对物品的喜欢程度,其中用户user=[A,B,C],物品item=[a,b,c],用户和物品有以下的关系:上述便原创 2016-11-01 23:31:14 · 17988 阅读 · 10 评论