背包问题之回溯和动态规划

2018年美团笔试中的一道Android编程题,要求在使用优惠券的情况下,求点菜的最低花费。此题是0-1背包问题的变种。文章介绍了如何用动态规划和回溯法解决此类问题,并提供了状态转移方程和回溯法的递归搜索思路。此外,还讨论了题目的变形及其解题策略。
摘要由CSDN通过智能技术生成

2018/10/9美团笔试编程第一题(Android)

题意大概是:输入n表示有n份菜,输入X表示优惠券满X减10,接下来n个数表示每份菜的价格,每份菜最多点一份。求使用优惠券的最少金额。

这是一道很有意思的题目,其实0-1背包问题的变体,关于0-1背包问题,我也只懂回溯法和动态规划。在此再复习一下。

背包问题:背包最大可装物品重量总共为w,每件物品为w[i],价值为v[i],求容量内可装最大价值。

动态规划

dp[i][j] 表示在考虑到了第i件商品,背包最大容量为j时,可获得的最大价值。
状态传递方程为 dp[i][j] = dp[i-1][j] ,此时是 w[i] > j,表明背包装不下该物品。当装得下时,则要考虑装入与不装入哪一种更具有价值,传递方程为 dp[i][j] = max(dp[i-1][j],dp[i-1][j-w[i]]+v[i])。以上

回溯法

回溯法采用递归搜索dfs,当搜到满足要求的点时更新当前的value,然后剪枝返回,不需要往下搜(甚至可以利用剪枝函数再次优化)。当搜到底时,说明搜不到要求的解,失败了返回。

题目变形

上面的编程题可以看成在菜品总价减去优惠券得到差价,求不超过差价的前提下尽可能多的装入菜࿰

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值