本讲的主要内容:
- 将线性代数与实际问题(图)联系起来
首先,在之前的一节中,我们了解了图的基本概念,本讲的例子:如下
在这个图中有四个结点,五条边。上面的图可以表示很多实际的问题,例如,如果上图表示电路网,带有箭头的线就表示电流以及方向。
由上面的图,我们将它的关联矩阵(Incidence Matrix)写出来:
注意关联矩阵的4列分别表示4个结点,行分别表示5条边,其中出点标记为-1,入点标记为1.
A=(−11000−110−1010−100100−11) A=\begin{pmatrix} -1 & 1 & 0 & 0\\ 0 & -1 & 1 & 0\\ -1 & 0 & 1 & 0\\ -1 & 0 & 0 & 1\\ 0 & 0 & -1 & 1 \end{pmatrix} A=⎝⎜⎜⎜⎜⎛−10−1−101−10000110−100011⎠⎟⎟⎟⎟⎞
考虑矩阵 AAA 的零空间,经过消元和回代:
Ax=(x2−x1x3−x2x3−x1x4−x1x4−x3)=(00000) Ax=\begin{pmatrix} x_{2}-x_{1}\\ x_{3}-x_{2}\\ x_{3}-x_{1}\\ x_{4}-x_{1}\\ x_{4} - x_{3} \end{pmatrix}=\begin{pmatrix} 0\\ 0\\ 0\\ 0\\ 0 \end{pmatrix} Ax=