MIT 线性代数导论 第十五讲:子空间投影

本讲的主要内容有:投影的概念为什么要进行投影操作最小二乘法的介绍投影(Projection)首先再二维平面中直观的看一下投影的概念:如图,两个不同向的向量 aaa, bbb,其中 bbb 落在 aaa 的方向上的向量 ppp 就是 bbb 在 aaa 上的投影,其实就是构成一个直角,这跟我们生活中的理解是一样的,从图中,我们有以下的定义和结论:向量 ppp ,它是向量 aaa...
摘要由CSDN通过智能技术生成

本讲的主要内容有:

  • 投影的概念
  • 为什么要进行投影操作
  • 最小二乘法的介绍

投影(Projection)

首先再二维平面中直观的看一下投影的概念:

如图,两个不同向的向量 a a a b b b,其中 b b b 落在 a a a 的方向上的向量 p p p 就是 b b b a a a 上的投影,其实就是构成一个直角,这跟我们生活中的理解是一样的,从图中,我们有以下的定义和结论:

  • 向量 p p p ,它是向量 a a a 的一部分,我们用式子 p = x a p=xa p=xa 表示
  • 向量 e e e,可以用 b − p b-p bp 表示,即: e = b − p e=b-p e=bp
  • e e e p p p 正交,根据上一讲的内容,可以得出:
    a T e = 0 a^{T}e=0 aTe=0
    根据上面 e e e 的解释,可以有如下过程:
    a T e = 0 ⇔ a T ( b − x a ) = 0 a^{T}e=0\Leftrightarrow a^{T}(b-xa)=0 aTe=0aT(bxa)=0

继续拆分,最终可以得到关于常数 x x x 的表达式:
x = a T b a T a x=\frac{a^{T}b}{a^{T}a} x=aTaaTb
又因为 p = x a p=xa p=xa,代入,得:
p = a a T b a t a p=a\frac{a^{T}b}{a^{t}a} p=aataaTb
如果我们将上面的式子继续写成某个矩阵乘 b b b 的形式,可以得到:
p = P ⋅

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值