题目描述 Description
【问题描述】
帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m 的矩阵,矩阵中的每个元素aij均
为非负整数。游戏规则如下:
1. 每次取数时须从每行各取走一个元素,共n个。m次后取完矩阵所有元素;
2. 每次取走的各个元素只能是该元素所在行的行首或行尾;
3. 每次取数都有一个得分值,为每行取数的得分之和,每行取数的得分= 被取走的元素值*2i,
其中i 表示第i 次取数(从1 开始编号);
4. 游戏结束总得分为m次取数得分之和。
帅帅想请你帮忙写一个程序,对于任意矩阵,可以求出取数后的最大得分。
输入描述 Input Description
第1行为两个用空格隔开的整数n和m。
第2~n+1 行为n*m矩阵,其中每行有m个用单个空格隔开的非负整数。
输出描述 Output Description
输出 仅包含1 行,为一个整数,即输入矩阵取数后的最大得分。
样例输入 Sample Input
2 3
1 2 3
3 4 2
样例输出 Sample Output
82
数据范围及提示 Data Size & Hint
样例解释
第 1 次:第1 行取行首元素,第2 行取行尾元素,本次得分为1*21+2*21=6
第2 次:两行均取行首元素,本次得分为2*22+3*22=20
第3 次:得分为3*23+4*23=56。总得分为6+20+56=82
【限制】
60%的数据满足:1<=n, m<=30, 答案不超过1016
100%的数据满足:1<=n, m<=80, 0<=aij<=1000
一道很经典的区间动态规划,主要的思路呢就是一行一行地去处理,然后在用区间
动态规划的套路:枚举区间,从小到大地构造最优解,最后再套上高精度模板就AC啦!OvO
//由于100%数据范围超出long long 故采用高精
//由题意可知,越往后取得数字,乘的值越大
//可以反向来看,从中间往两边取数,每次都在原来数字之和*2+现取数,如此便可不预处理2的n次方
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=80+10;
struct BIGNUM {
int num[maxn],len;
BIGNUM(){memset(num,0,sizeof(num));len=1;}
BIGNUM operator = (const char str[]) {
len=strlen(str);
for(int i=0;i<len;i++)
num[i]=str[len-i-1]-'0';
while(num[len-1]==0&&len>1) len--;
return *this;
}
BIGNUM operator = (const int n) {
int tmp=n;
len=1;
do {
num[len-1]=tmp%10;
tmp/=10;len++;
}while(tmp>0);
while(num[len-1]==0&&len>1) len--;
return *this;
}
BIGNUM operator + (const BIGNUM &rhs) const {
BIGNUM tmp;
tmp.len=max(len,rhs.len)+1;
for(int i=0;i<tmp.len;i++) {
tmp.num[i]+=num[i]+rhs.num[i];
tmp.num[i+1]=tmp.num[i]/10;
tmp.num[i]%=10;
}
while(tmp.num[tmp.len-1]==0&&tmp.len>1) tmp.len--;
return tmp;
}
BIGNUM operator * (const BIGNUM &rhs) const {
BIGNUM tmp;
tmp.len=len+rhs.len;
for(int i=0;i<len;i++)
for(int j=0;j<rhs.len;j++) {
tmp.num[i+j]+=num[i]*rhs.num[j];
tmp.num[i+j+1]+=tmp.num[i+j]/10;
tmp.num[i+j]%=10;
}
while(tmp.num[tmp.len-1]==0&&tmp.len>1) tmp.len--;
return tmp;
}
bool operator < (const BIGNUM &rhs) const {
if(len>rhs.len) return false;
if(len<rhs.len) return true;
for(int i=len-1;i>=0;i--)
if(num[i]!=rhs.num[i]) return num[i]<rhs.num[i];
return false;
}
void print() {
for(int i=len-1;i>=0;i--) printf("%d",num[i]);
}
}dp[maxn][maxn];
BIGNUM ans;
int a[maxn];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
BIGNUM pow;
pow=2;
for(int i=1;i<=n;i++) {
memset(dp,0,sizeof(dp));
for(int j=1;j<=m;j++) {
scanf("%d",&a[j]);
dp[j][j]=a[j]*2;
}
for(int x=2;x<=m;x++)
for(int l=1;l<=m;l++) {
int r=l+x-1;
if(r>m) continue;
dp[l][r]=max(dp[l+1][r]*pow+dp[l][l],dp[l][r-1]*pow+dp[r][r]);
}
ans=ans+dp[1][m];
}
ans.print();
return 0;
}
高精模板
int main()
{
int n,m;
cin>>m>>n;
bigint a[105];
bigint tot,f[maxn][maxn];
bigint q,p;
for(int num=1;num<=m;num++)
{
for(int i=1;i<=n;i++)
cin>>a[i];
for(int i=1;i<=n;i++)
f[i][i]=a[i]+a[i];//预处理
for(int l=1;l<=n-1;l++)
for(int i=1;i<=n&&i+l<=n;i++)
{
int j=i+l;//因为是用高精做的,所以没有max。状态转移方程是:f[i][j]=max(a[i]+f[i+1][j] , a[j]+f[i][j-1])*2
p=a[i]+f[i+1][j];//用乘2来算的话会跑的比西方记者还快[OvO]
q=a[j]+f[i][j-1];
if(p<q)
f[i][j]=q+q;
else
f[i][j]=p+p;
}
tot=f[1][n]+tot;
memset(&a,0,sizeof(a));
memset(&f,0,sizeof(f));
memset(&q,0,sizeof(q));
memset(&p,0,sizeof(p));
}
cout<<tot;
return 0;
}