1. 学习目标
(1)学习FastText的使用和基础原理
(2)学会使用验证集进行调参
2.FastText文本表示法
FastText是一种典型的深度学习词向量的表示方法,它非常简单通过Embedding层将单词映射到稠密空间,然后将句子中所有的单词在Embedding空间中进行平均,进而完成分类操作。
所以FastText是一个三层的神经网络,输入层、隐含层和输出层。
使用keras实现的FastText网络结构:
from __future__ import unicode_literals
from keras.models import Sequential
from keras.layers import Embedding
from keras.layers import GlobalAveragePoolingID
from keras.layers import Dense
VOCAB_SIZE = 2000
EMBEDDING_DIM = 100
MAX_WORDS = 500
CLASS_NUM = 5
def build_fastText():
model = Sequential()
#通过embedding层,我们将词汇映射成EMBEDDING_DIM维向量
model.add(Embedding(VOCAB_SIZE,EMBEDDING_DIM,input_length=MAX_WORDS))
#通过GlobalAveragePoolingID,我们平均了文档中所有词的embedding
model.add(GlobalAveragePoolingID())
#通过输出层Softmax分类(真实的fastText这里是分层Softmax),得到类别概率分布
model.add(Dense(CLASS_NUM,activation='softmax'))
#定义损失函数,优化器,分类度量指标
model.compile(loss='categorical_crossentropy',optimizer='SGD',metrics=['accuracy'])
return model
if __name__ == '__main__':
model = build_fastText()
print(model.summary())
FastText在文本分类任务上,是优于TF-IDF的:
(1)FastText用单词的Embedding叠加获得的文档向量,将相似的句子分为一类
(2)FastText学习到的Embedding空间维度比较低,可以快速进行训练
3.基于FastText的文本分类
```python
import pandas as pd
import fasttext
from sklearn.metrics import f1_score
if __name__ == '__main__':
# 转换为FastText需要的格式
train_df = pd.read_csv('train_set.csv', sep='\t', nrows=15000)
train_df['label_ft'] = '__label__' + train_df['label'].astype(str)
train_df[['text','label_ft']].iloc[:-5000].to_csv('train.csv', index=None, header=None, sep='\t')
model = fasttext.train_supervised('train.csv', lr=1.0, wordNgrams=2,
verbose=2, minCount=1, epoch=25, loss="hs")
val_pred = [model.predict(x)[0][0].split('__')[-1] for x in train_df.iloc[-5000:]['text']]
print(f1_score(train_df['label'].values[-5000:].astype(str), val_pred, average='macro'))
可以使用交叉验证进行调参。