每天一道LeetCode-----杨辉三角

Pascal’s Triangle

原题链接Pascal’s Triangle

杨辉三角,求出前n行的杨辉三角排列

杨辉三角的特点是triangle[i][j] = triangle[i-1][j-1] + triangle[i-1][j],越界的下标值为0

所以直接根据这个公式计算即可

代码如下

class Solution {
public:
    vector<vector<int>> generate(int numRows) {
        vector<vector<int>> res(numRows);
        if(numRows == 0)    return res;
        res[0] = {1};
        for(int i = 1; i < numRows; ++i)
        {
            res[i].reserve(i + 1);
            for(int j = 0; j < i + 1; ++j)
            {
                int n = 0;
                /* 第一个j - 1会越界,直接设置为0 */
                n += (j > 0) ? res[i - 1][j - 1] : 0;
                /* 最后一个j会越界,直接设置为0 */
                n += (j < i) ? res[i - 1][j] : 0;
                res[i].push_back(n);
            }
        }
        return res;
    }
};

Pascal’s Triangle II

原题链接Pascal’s Triangle II

杨辉三角,找到第k行(从0开始),要求空间复杂度是O(k)

因为前k行每一行的元素个数都小于k+1,所以直接开辟k+1的数组空间,然后从第0行开始求,不断改变数组元素,最后求得第k行

又因为求新的一行时会用到上一行的对应列元素和前一列元素,所以不能从左向右而应该从又向左求

代码如下

class Solution {
public:
    vector<int> getRow(int rowIndex) {
        vector<int> res(rowIndex + 1);
        res[0] = 1;
        for(int i = 1; i <= rowIndex; ++i)
        {
            /* 从后往前求 */
            for(int j = i; j >= 0; --j)
            {
                int n = 0;
                n += (j > 0) ? res[j - 1] : 0;
                n += (j < i) ? res[j] : 0;
                res[j] = n;
            }
        }
        return res;
    }
};

两道题都是和杨慧三角有关,对着公式写代码就可以了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值