这道题很典型,第一时间想到动态规划。但题目中说可以用更加巧妙的分治法,于是用此法实现了下。
一开始看到java的代码,但用c++写到一般发现把半个数组当作参数传有点费事,于是修改了参数,重新写了help函数辅助。
后来数组就一直越界,肯定是边界条件没有处理干净。
后总结了一套边界处理但方法,以后可以沿用。
在对数组做划分的时候,参数(a,b)全部为下标,即b为sz-1。中间两个值 l=(a+b)/2, r=l+1。
1)当sz为奇数7时,a=0, b = 6, l=3,r=4。左边下标0123,右边下标456.
2)当sz为偶数8时,a=0, b = 7,l=3,r=4;左边下标0123,右边下标4567.
之后还是数组越界·,于是增加了b-a=1时的特判条件。
可以正常运行但是wa掉了。发现必须算上中间元素的最大子序列和才能相加,修改后正确。
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int sz = nums.size();
if(sz == 0) return 0;
return help(nums, 0, sz-1);
}
int help(vector<int>& nums, int a, int b){
if(a == b) return nums[a];
int l = (a+b)/2;
int r = l+1;
int lsum = 0;
int rsum = 0;
int lmax = nums[l];
int rmax = nums[r];
int sum = 0;
for(int i = l; i >= 0; i--){
lsum = lsum+nums[i];
lmax = max(lmax, lsum);
}
for(int i = r; i <=b; i++){
rsum = rsum+nums[i];
rmax = max(rmax, rsum);
}
sum = lmax+rmax;
sum = max(sum, max(help(nums, a, l), help(nums, r, b)));
return sum;
}
};