leetcode 53 最大子序和

这道题很典型,第一时间想到动态规划。但题目中说可以用更加巧妙的分治法,于是用此法实现了下。

一开始看到java的代码,但用c++写到一般发现把半个数组当作参数传有点费事,于是修改了参数,重新写了help函数辅助。

后来数组就一直越界,肯定是边界条件没有处理干净。

后总结了一套边界处理但方法,以后可以沿用。

在对数组做划分的时候,参数(a,b)全部为下标,即b为sz-1。中间两个值 l=(a+b)/2, r=l+1。

1)当sz为奇数7时,a=0, b = 6, l=3,r=4。左边下标0123,右边下标456.

2)当sz为偶数8时,a=0, b = 7,l=3,r=4;左边下标0123,右边下标4567.

之后还是数组越界·,于是增加了b-a=1时的特判条件。

可以正常运行但是wa掉了。发现必须算上中间元素的最大子序列和才能相加,修改后正确。

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int sz = nums.size();
        if(sz == 0) return 0;
        return help(nums, 0, sz-1);
    }
    
    int help(vector<int>& nums, int a, int b){
        if(a == b) return nums[a];
        int l = (a+b)/2;
        int r = l+1;
        int lsum = 0;
        int rsum = 0;
        int lmax = nums[l];
        int rmax = nums[r];
        int sum = 0;
        for(int i = l; i >= 0; i--){
            lsum = lsum+nums[i];
            lmax = max(lmax, lsum);
        }
        for(int i = r; i <=b; i++){
            rsum = rsum+nums[i];
            rmax = max(rmax, rsum);
        }
        sum = lmax+rmax;
        sum = max(sum, max(help(nums, a, l), help(nums, r, b)));
        return sum;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值