题目描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007
代码
1.暴力解法
通过率50%,运行超时
public class Solution {
public int InversePairs(int [] array) {
if(array.length==0||array==null){
return 0;
}
int count=0;
for(int i=0;i<array.length-1;i++){
for(int j=i+1;j<array.length;j++){
if(array[i]>array[j]){
count++;
}
}
}
int result=count%1000000007;
return result;
}
}
2.归并排序
先放这里,看了好久也不知道问题在哪儿。
public class Solution {
public int InversePairs(int [] array) {
if(array==null||array.length<2){
return 0;
}
return process(array,0,array.length-1);
}
public int process(int[] arr,int l,int r){
if(l>=r){
return 0;
}
int mid=l+((r-l)>>1);
return process(arr,l,mid)+process(arr,mid+1,r)+merge(arr,l,mid,r);
}
public int merge(int[] arr,int l,int m,int r){
int[] help=new int[r-l+1];
int i=0,p1=l,p2=m+1,count=0;
while(p1<=m&&p2<=r){
count=arr[p1]>arr[p2]? ((count+m-p1+1)%1000000007):(count%1000000007);
help[i++]=arr[p1]<arr[p2]? arr[p1++]:arr[p2++];
}
//以下两个while仅可能会发生一个
while(p1<=m){
help[i++]=arr[p1++];
}
while(p2<=r){
help[i++]=arr[p2++];
}
for(i=0;i<help.length;i++){
arr[l+i]=help[i];
}
return count;
}
}