剑指offer打卡|数组中的逆序对

题目描述

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007

代码

1.暴力解法

通过率50%,运行超时

public class Solution {
    public int InversePairs(int [] array) {
        if(array.length==0||array==null){
            return 0;
        }
        int count=0;
        for(int i=0;i<array.length-1;i++){
            for(int j=i+1;j<array.length;j++){
                if(array[i]>array[j]){
                    count++;
                }
            }
        }
        int result=count%1000000007;
        return result;
    }
}

2.归并排序

先放这里,看了好久也不知道问题在哪儿。

public class Solution {
    public int InversePairs(int [] array) {
        if(array==null||array.length<2){
            return 0;
        }
        return process(array,0,array.length-1);
    }
    public int process(int[] arr,int l,int r){
        if(l>=r){
            return 0;
        }
        int mid=l+((r-l)>>1);
        return process(arr,l,mid)+process(arr,mid+1,r)+merge(arr,l,mid,r);
    }
    public int merge(int[] arr,int l,int m,int r){
        int[] help=new int[r-l+1];
        int i=0,p1=l,p2=m+1,count=0;
        while(p1<=m&&p2<=r){
            count=arr[p1]>arr[p2]? ((count+m-p1+1)%1000000007):(count%1000000007);
            help[i++]=arr[p1]<arr[p2]? arr[p1++]:arr[p2++];
        }
        //以下两个while仅可能会发生一个
        while(p1<=m){
            help[i++]=arr[p1++];
        }
        while(p2<=r){
            help[i++]=arr[p2++];
        }
        for(i=0;i<help.length;i++){
            arr[l+i]=help[i];
        }
        return count;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值