在语音增强领域,噪声通常可以分为稳态噪声(例如白噪声)和瞬态噪声(也称为非稳态噪声,如键盘声)。对于熟悉语音降噪的读者来说,通常的信号处理方法对稳态噪声有较好的效果,具体可以参考WebRTC ANR流程解析。然而,对于瞬态噪声,由于噪声变化迅速,传统的噪声估计算法难以准确跟踪,因此通常采用基于深度学习的方法来抑制瞬态噪声,参考DNN单通道语音增强。
那么,是否可以使用信号处理方法来抑制瞬态噪声呢?答案是肯定的。为了不卖关子,先给大家展示一下信号处理方法在抑制瞬态噪声方面的实际效果,这或许会让你对信号处理的能力刮目相看
瞬态噪声的抑制流程图如下所示。与传统的噪声抑制流程相比,除了噪声谱估计模块之外,还增加了一个瞬态谱估计模块。这一额外的模块专门用于跟踪和估计瞬态噪声的频谱,从而更有效地抑制快速变化的噪声类型,提升整体语音增强的效果。