Python与R共舞:在python中用ggplot2、plotnine画散点相关(回归)分析图(附最新高清plotnine、ggplot2速查表(ggplot2-cheatsheet))

在这里插入图片描述
| 图源

  虽然python有许多可视化的包,如matplotlib,seaborn,pandas等。但是笔者还是被ggplot2包绘图所吸引,图层直接简单叠加型设计,用它们可以美观、灵活、简洁的构建几乎任何类型的图表。ggplot2有直接的python版本——ggplot(几年未更新,有些地方会与现在的包不兼容),plotnine(一个类似ggplot2的包,但是功能太不齐全)。考虑到ggplot2的python版本存在一些问题,加上还不能和ggplot2辅助包如ggpubr等连用,所以笔者还折腾了一下rpy2。rpy2是一个连接R与python的接口,通过它,我们可以在python代码里直接用R包。最后,对于python里使用ggplot2,折腾了半天,最后实际的感受是,图好看,自由度大,可以用但是接口体验感不佳。

copyright © 意疏:https://blog.csdn.net/sinat_35907936/article/details/120315347


plotnine


  • 安装plotnine

pip install plotnine
  • 使用plotnine画散点相关(回归)分析图

  基本框架:先创建一个ggplot对象,然后在上面叠加+图层。

  plotnine.ggplot:创建ggplot对象,参数包括pandas.DataFrame类型的数据和要分析的变量。相当于创建了一个空白的底层。

  geom_point:添根据数据添加几何点图层。

  stat_smooth:画出回归线与置信区间。

  theme_bw: 设置主题样式:黑色网格线(b)白色背景(w)。

  annotate:添加标注。

import numpy as np
import pandas as pd
import scipy as sp
from plotnine import *

# 模拟数据
x = np.arange(1,100,1)
y = 0.5*x + np.random.randint(low=-1, high=50, size=99)
df = pd.DataFrame({
   'X':x, 'Y':y})

# 计算相关系数
r, p = sp.stats.pearsonr(x, y)
p_text =  'R={:.2f}, P={:.2e}'.format(r, p)

# 画图
p1 = (
    ggplot(df, aes('X'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值