| 图源
虽然python有许多可视化的包,如matplotlib,seaborn,pandas等。但是笔者还是被ggplot2包绘图所吸引,图层直接简单叠加型设计,用它们可以美观、灵活、简洁的构建几乎任何类型的图表。ggplot2有直接的python版本——ggplot(几年未更新,有些地方会与现在的包不兼容),plotnine(一个类似ggplot2的包,但是功能太不齐全)。考虑到ggplot2的python版本存在一些问题,加上还不能和ggplot2辅助包如ggpubr等连用,所以笔者还折腾了一下rpy2。rpy2是一个连接R与python的接口,通过它,我们可以在python代码里直接用R包。最后,对于python里使用ggplot2,折腾了半天,最后实际的感受是,图好看,自由度大,可以用但是接口体验感不佳。
copyright © 意疏:https://blog.csdn.net/sinat_35907936/article/details/120315347
plotnine
pip install plotnine
基本框架:先创建一个ggplot对象,然后在上面叠加+
图层。
plotnine.ggplot:创建ggplot对象,参数包括pandas.DataFrame类型的数据和要分析的变量。相当于创建了一个空白的底层。
geom_point:添根据数据添加几何点图层。
stat_smooth:画出回归线与置信区间。
theme_bw: 设置主题样式:黑色网格线(b)白色背景(w)。
annotate:添加标注。
import numpy as np
import pandas as pd
import scipy as sp
from plotnine import *
# 模拟数据
x = np.arange(1,100,1)
y = 0.5*x + np.random.randint(low=-1, high=50, size=99)
df = pd.DataFrame({
'X':x, 'Y':y})
# 计算相关系数
r, p = sp.stats.pearsonr(x, y)
p_text = 'R={:.2f}, P={:.2e}'.format(r, p)
# 画图
p1 = (
ggplot(df, aes('X'