- 博客(18)
- 资源 (7)
- 收藏
- 关注
原创 #“Machine Learning”(Andrew Ng)#Week 4_3:Examples and Intuition I
1、Examples and Intuition 1在这个例子中,我只画出了两个正样本和两个负样本,你可以认为这是一个更复杂的学习问题的简化版本。在这个复杂问题中,我们可能在右上角有一堆正样本,在左下方有 一堆用圆圈表示的负样本,我们想要学习一种非线性的决策边界来区分正负样本。
2017-02-18 18:11:33 305
原创 #“Machine Learning”(Andrew Ng)#Week 4_2:Model Representation(神经网络)
1、Model Representation 1当我们在运用神经网络时,我们该如何表示我们的假设或模型?既然神经网络是在模仿大脑中的神经元,那么大脑中神经元的工作方式是什么样的呢?
2017-02-16 15:57:37 418
原创 #“Machine Learning”(Andrew Ng)#Week 4_1:Neural Networks(神经网络)
Neural Networks(神经网络)Neural networks is a model inspired by how the brain works. It is widely used today in many applications: when your phone interprets and understand your voice commands, it is
2017-02-15 21:15:37 402
原创 #“Machine Learning”(Andrew Ng)#Week 3_4:Solving the Problem of Overfitting
1、The Problem of Overfitting什么是过拟合?我们通过一组图来说明:欠拟合:这个问题的另一个术语叫做高偏差(bias),这两种说法大致相似,意思是它只是没有很好地拟合训练数据。它的意思是,如果拟合一条直线到训练数据,那么该算法就有一个很强的偏见或者说非常大的偏差。
2017-02-02 18:59:26 423
原创 #“Machine Learning”(Andrew Ng)#Week 3_3:Multiclass Classification One-vs-all
1、Multiclass Classification One-vs-all如何使用逻辑回归 (logistic regression) 来解决多类别分类问题,具体来说,我想通过一个叫做"一对多" (one-vs-all) 的分类算法?什么是多类别分类问题?
2017-02-02 11:35:48 2467
原创 #“Machine Learning”(Andrew Ng)#Week 3_2:Logistic Regression Model
1、Cost FunctionAnd the question that I want to talk about is given this training set, how do we choose, or how do we fit the parameter's theta?
2017-02-01 19:13:01 427
原创 #“Machine Learning”(Andrew Ng)#Week 3_1:Classification and Representation
1、ClassficationTo attempt classification, one method is to use linear regression and map all predictions greater than 0.5 as a 1 and all less than 0.5 as a 0. However, this method doesn't work well
2017-02-01 10:15:12 405
原创 #“Machine Learning”(Andrew Ng)#Week 2_2:Octave/Matlab Tutorial
Basic Operations
2017-01-30 19:11:04 874
原创 #“Machine Learning”(Andrew Ng)#Week 2_2:Normal Equation
具体而言,到目前为止,我们一直在使用的线性回归的算法,是梯度下降法。就是说,为了最小化代价函数 J(θ) 来最小化这个,我们使用的迭代算法,需要经过很多步来收敛到全局最小值。相反地,正规方程法提供了一种求 θ 的解析解法,可以直接一次性求解θ的最优值。
2017-01-25 10:41:35 245
原创 #“Machine Learning”(Andrew Ng)#Week 2_1:Multivariate Linear Regression
1、Multiple Features (Variables) 一种新的,更为有效的线性回归形式 这种形式适用于多个变量。(现在拥有更多的信息可以用来预测某一个结果)n:表示特征量的数目x 上标 (i) :表示第i个训练样本的输入特征值 (x上标(2) 这样表示 就是一个四维向量 事实上更普遍地来说 这是n维的向量)x上标(i)下标j :第i个训练样本的 第j个特征量 。
2017-01-23 15:39:14 348
原创 #“Machine Learning”(Andrew Ng)#Week 1_3:Linear Algebra Review
Linear Algebra Review1、Matrices and Vectors表示问题/维数/具体元素的表示/1-索引与0-索引2、Addition and Scalar Multiplication矩阵的加法与减法(对应项元素相加减)/维度相同原则/矩阵的数乘/3、Matrix Vector Multiplication矩阵与向量的乘法运算/维数匹配原则
2017-01-21 19:11:00 317
原创 #“Machine Learning”(Andrew Ng)#Week 1_2:Gradient Descent
Parameter LearningGradient Descent(So we have our hypothesis function and we have a way of measuring how well it fits into the data.Now we need to estimate the parameters in the hypothesis function. That's where gradient descent comes in.)
2017-01-21 09:45:58 478
原创 #“Machine Learning”(Andrew Ng)#Week 1_2: Cost Function
Model and Cost FunctionCost Function(We can measure the accuracy of our hypothesis function by using a cost function.)
2017-01-20 18:26:24 400
原创 #“Machine Learning”(Andrew Ng)#Week 1_1:Introduction/Supervised/Un supervised/Linear regression
Welcome to Machine Learning!1、Ai: Artificial intelligence.2、Many scientists think the best way to make progress on this is through learning algorithms called neural networks, which mimic how the human brain works.
2017-01-20 08:52:21 369
原创 我读《基于WebRTC的无线实时通信QoS-QoE评估与预测》
1、WebRTC:网页实时通信技术(Web Real-Time Communication),是采用B2B(browser to browser)模式的支持网页浏览器进行实时视频语音或视频对话的开源技术。2、传统的视频服务质量参数并不能很好的反映视频流畅度,并且不易在已有的系统中获得。通过分析WebRTC源代码和大量实验测量发现两个相邻视频帧的播放时间可以很好的反映视频的流畅度和清晰度的变化。
2017-01-15 22:08:40 1271 1
原创 我读《基于OpenFlow的视频用户QoE优化研究》
1、软件定义网络(SDN)因其在网络资源调度和流量管理方面的智能化和灵活性,是改善视频流媒体业务QoE的一种有效手段。2、注意,网络QoS与用户感知质量QoE并不等价,因为其没有充分考虑用户直观感受的因素影响,可能会出现网络服务质量QoS好而用户用户感知质量QoE差的情况。3、一种新的改善视频流媒体用户感知质量的优化策略,利用OpenFlow收集的网络流量信息,检测客户端的视频播放器缓冲区
2017-01-13 09:24:58 1750
原创 我读《移动互联网中基于机器学习的用户个性化QoE评估》
1.大多数研究所考虑的因素都局限在便于观察测量的客观因素,而很少研究QoE与用户主观因素的关系,粒度难以精确到单用户单业务。2.搭建一个搜集个性化QoE相关数据的数据搜集平台。此平台可以提供在线视频播放功能,并同时搜集相关的用户数据,这些数据可以为个性化QoE评估提供研究基础。3.在实际应用中,考用户反馈得到用户针对业务的偏好是不现实的,因此需要对用户偏好进行合理预测。
2017-01-12 21:19:44 619 1
原创 悄然无息第一篇:阅读一篇论文的随手记要
先讲几句废话,纪念我的第一篇CSDN博客。本来想把标题起名为:“开天辟地第一篇”,转念想想,还是算了,作为一名研一的专业小白,要低调要虚心.......,还是“悄无声息”来得好。这篇主要围绕“Software Networks at the Edge: a shift of paradigm”,我看这篇论文时遇到的问题、疑惑,灵光点来的。
2016-12-20 14:38:37 466
geckodriver-v0.15.0-macos.tar
2017-07-04
geckodriver
2017-07-04
图解机器学习
2017-07-02
精通MATLAB最优化计算
2017-07-02
Neural Networks and Deep Learning(中文版)
2016-12-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人