自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Dave‘s blog

永远记住,现在正在发生的事情就是最好的事情!All is well !

  • 博客(18)
  • 资源 (7)
  • 收藏
  • 关注

原创 #“Machine Learning”(Andrew Ng)#Week 4_3:Examples and Intuition I

1、Examples and Intuition 1在这个例子中,我只画出了两个正样本和两个负样本,你可以认为这是一个更复杂的学习问题的简化版本。在这个复杂问题中,我们可能在右上角有一堆正样本,在左下方有 一堆用圆圈表示的负样本,我们想要学习一种非线性的决策边界来区分正负样本。

2017-02-18 18:11:33 305

原创 #“Machine Learning”(Andrew Ng)#Week 4_2:Model Representation(神经网络)

1、Model Representation 1当我们在运用神经网络时,我们该如何表示我们的假设或模型?既然神经网络是在模仿大脑中的神经元,那么大脑中神经元的工作方式是什么样的呢?

2017-02-16 15:57:37 418

原创 #“Machine Learning”(Andrew Ng)#Week 4_1:Neural Networks(神经网络)

Neural Networks(神经网络)Neural networks is a model inspired by how the brain works. It is widely used today in many applications: when your phone interprets and understand your voice commands, it is

2017-02-15 21:15:37 402

原创 #“Machine Learning”(Andrew Ng)#Week 3_4:Solving the Problem of Overfitting

1、The Problem of Overfitting什么是过拟合?我们通过一组图来说明:欠拟合:这个问题的另一个术语叫做高偏差(bias),这两种说法大致相似,意思是它只是没有很好地拟合训练数据。它的意思是,如果拟合一条直线到训练数据,那么该算法就有一个很强的偏见或者说非常大的偏差。

2017-02-02 18:59:26 423

原创 #“Machine Learning”(Andrew Ng)#Week 3_3:Multiclass Classification One-vs-all

1、Multiclass Classification One-vs-all如何使用逻辑回归 (logistic regression) 来解决多类别分类问题,具体来说,我想通过一个叫做"一对多" (one-vs-all) 的分类算法?什么是多类别分类问题?

2017-02-02 11:35:48 2467

原创 #“Machine Learning”(Andrew Ng)#Week 3_2:Logistic Regression Model

1、Cost FunctionAnd the question that I want to talk about is given this training set, how do we choose, or how do we fit the parameter's theta?

2017-02-01 19:13:01 427

原创 #“Machine Learning”(Andrew Ng)#Week 3_1:Classification and Representation

1、ClassficationTo attempt classification, one method is to use linear regression and map all predictions greater than 0.5 as a 1 and all less than 0.5 as a 0. However, this method doesn't work well

2017-02-01 10:15:12 405

原创 #“Machine Learning”(Andrew Ng)#Week 2_2:Octave/Matlab Tutorial

Basic Operations

2017-01-30 19:11:04 874

原创 #“Machine Learning”(Andrew Ng)#Week 2_2:Normal Equation

具体而言,到目前为止,我们一直在使用的线性回归的算法,是梯度下降法。就是说,为了最小化代价函数 J(θ) 来最小化这个,我们使用的迭代算法,需要经过很多步来收敛到全局最小值。相反地,正规方程法提供了一种求 θ 的解析解法,可以直接一次性求解θ的最优值。

2017-01-25 10:41:35 245

原创 #“Machine Learning”(Andrew Ng)#Week 2_1:Multivariate Linear Regression

1、Multiple Features (Variables)  一种新的,更为有效的线性回归形式 这种形式适用于多个变量。(现在拥有更多的信息可以用来预测某一个结果)n:表示特征量的数目x 上标 (i) :表示第i个训练样本的输入特征值 (x上标(2) 这样表示 就是一个四维向量 事实上更普遍地来说 这是n维的向量)x上标(i)下标j :第i个训练样本的 第j个特征量 。

2017-01-23 15:39:14 348

原创 #“Machine Learning”(Andrew Ng)#Week 1_3:Linear Algebra Review

Linear Algebra Review1、Matrices and Vectors表示问题/维数/具体元素的表示/1-索引与0-索引2、Addition and Scalar Multiplication矩阵的加法与减法(对应项元素相加减)/维度相同原则/矩阵的数乘/3、Matrix Vector Multiplication矩阵与向量的乘法运算/维数匹配原则

2017-01-21 19:11:00 317

原创 #“Machine Learning”(Andrew Ng)#Week 1_2:Gradient Descent

Parameter LearningGradient Descent(So we have our hypothesis function and we have a way of measuring how well it fits into the data.Now we need to estimate the parameters in the hypothesis function. That's where gradient descent comes in.)

2017-01-21 09:45:58 478

原创 #“Machine Learning”(Andrew Ng)#Week 1_2: Cost Function

Model and Cost FunctionCost Function(We can measure the accuracy of our hypothesis function by using a cost function.)

2017-01-20 18:26:24 400

原创 #“Machine Learning”(Andrew Ng)#Week 1_1:Introduction/Supervised/Un supervised/Linear regression

Welcome to Machine Learning!1、Ai: Artificial intelligence.2、Many scientists think the best way to make progress on this is through learning algorithms called neural networks, which mimic how the human brain works.

2017-01-20 08:52:21 369

原创 我读《基于WebRTC的无线实时通信QoS-QoE评估与预测》

1、WebRTC:网页实时通信技术(Web Real-Time Communication),是采用B2B(browser to browser)模式的支持网页浏览器进行实时视频语音或视频对话的开源技术。2、传统的视频服务质量参数并不能很好的反映视频流畅度,并且不易在已有的系统中获得。通过分析WebRTC源代码和大量实验测量发现两个相邻视频帧的播放时间可以很好的反映视频的流畅度和清晰度的变化。

2017-01-15 22:08:40 1271 1

原创 我读《基于OpenFlow的视频用户QoE优化研究》

1、软件定义网络(SDN)因其在网络资源调度和流量管理方面的智能化和灵活性,是改善视频流媒体业务QoE的一种有效手段。2、注意,网络QoS与用户感知质量QoE并不等价,因为其没有充分考虑用户直观感受的因素影响,可能会出现网络服务质量QoS好而用户用户感知质量QoE差的情况。3、一种新的改善视频流媒体用户感知质量的优化策略,利用OpenFlow收集的网络流量信息,检测客户端的视频播放器缓冲区

2017-01-13 09:24:58 1750

原创 我读《移动互联网中基于机器学习的用户个性化QoE评估》

1.大多数研究所考虑的因素都局限在便于观察测量的客观因素,而很少研究QoE与用户主观因素的关系,粒度难以精确到单用户单业务。2.搭建一个搜集个性化QoE相关数据的数据搜集平台。此平台可以提供在线视频播放功能,并同时搜集相关的用户数据,这些数据可以为个性化QoE评估提供研究基础。3.在实际应用中,考用户反馈得到用户针对业务的偏好是不现实的,因此需要对用户偏好进行合理预测。

2017-01-12 21:19:44 619 1

原创 悄然无息第一篇:阅读一篇论文的随手记要

先讲几句废话,纪念我的第一篇CSDN博客。本来想把标题起名为:“开天辟地第一篇”,转念想想,还是算了,作为一名研一的专业小白,要低调要虚心.......,还是“悄无声息”来得好。这篇主要围绕“Software Networks at the Edge: a shift of paradigm”,我看这篇论文时遇到的问题、疑惑,灵光点来的。

2016-12-20 14:38:37 466

geckodriver-v0.15.0-macos.tar

geckodriver是一原生态的第三方浏览器,对于selenium3.x版本都会使用geckodriver来驱动firefox,所以需要下载geckodriver.exe。放置在Path 环境变量可以访问到的地方。例如 C:\python34

2017-07-04

geckodriver

geckodriver是一原生态的第三方浏览器,对于selenium3.x版本都会使用geckodriver来驱动firefox,所以需要下载geckodriver.exe。放置在Path 环境变量可以访问到的地方。例如 C:\python34

2017-07-04

scipy-0.19.0.zip

scipy-0.19.0

2017-07-04

图解机器学习

本书用丰富的图示,从最小二乘法出发,对基于最小二乘法实现的各种机器学习算法进行了详细的介绍。第Ⅰ部分介绍了机器学习领域的概况;第Ⅱ部分和第Ⅲ部分分别介绍了各种有监督的回归算法和分类算法;第Ⅳ部分介绍了各种无监督学习算法;第Ⅴ部分介绍了机器学习领域中的新兴算法。书中大部分算法都有相应的MATLAB程序源代码,可以用来进行简单的测试。, 本书适合所有对机器学习有兴趣的初学者阅读。, 187张图解轻松入门, 提供可执行的Matlab程序代码, 覆盖机器学习中最经典、用途最广的算法, 专业实用, 东京大学教授、机器学习权威专家执笔,浓缩机器学习的关键知识点, 图文并茂, 187张图示帮助理解,详略得当,为读懂大部头开路。, 角度新颖, 基于最小二乘法讲解各种有监督学习的回归和分类算法,以及无监督学习算法。, 实战导向, 配有可执行的MATLAB程序代码,边学习边实践。

2017-07-02

精通MATLAB最优化计算

《精通MATLAB最优化计算》的主要内容是应用MATLAB来解决最优化问题,通过将“最优化问题”、“MATLAB优化工具箱”和“MATLAB编程”这三方面有机结合进行讲述,即一方面是使用工具箱来快速解决最优化问题,另一方面是通过算法编程深入解决最优化问题。《精通MATLAB最优化计算》侧重于最优化算法的MATLAB实现,同时精选了大量的最优化问题实例,通过实例的求解,生动地教会读者掌握MATLAB在最优化问题方面的应用。通过《精通MATLAB最优化计算》,读者不仅能掌握使用MATLAB最优化工具箱来快速解决实际问题,而且能学会分析优化算法和采用MATLAB编程解决最优化问题,从而提高分析和解决问题的能力。《精通MATLAB最优化计算》可作为信息、数学、经济、金融、管理、运筹、统计、计算机以及有关理工科专业的本科生、研究生作为教材、实验或教学参考书,也可供相关工程技术与管理人员、数学建模爱好者参考。

2017-07-02

Neural Networks and Deep Learning(中文版)

这本书最初是我学习 Neural Networks and Deep Learning 时做的中文笔记,因为原书中有很 多数学公式,所以我用 LATEX 来编写和排版,并将所有 LATEX 源码放置在 GitHub。其中部分内容 取自 Xiaohu Zhu 已经完成的翻译来避免重复的工作。 如果你对此中译本有任何建议和意⻅,欢迎以 issue 的方式提交到 GitHub 项目主⻚。 ——Freeman Zhang

2016-12-18

机器学习 统计学习方法

统计学习方法

2016-12-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除