漫画 B树 B-树

转载自 玻璃猫 程序员小灰

B树全程是Balance Tree,也可以称为B-树,但中间的-不是减号,只是一杠 B-树的重点: 把原来“瘦高”的树结构变得“矮胖”。 B树是一种多路平衡查找树,它的每一个节点最多包含K个孩子,K被称为B树的阶。k的大小取决于磁盘页的大小。 只要树的高度足够低,IO次数足够少,就可以提升查找性能。 B-树的添加删除都比较复杂。 主要应用于文件系统以及部分数据库索引

————————————

————————————

二叉查找树的结构:

第1次磁盘IO:

第2次磁盘IO:

第3次磁盘IO:

第4次磁盘IO:

下面来具体介绍一下B-树(Balance Tree),一个m阶的B树具有如下几个特征:

1.根结点至少有两个子女。

2.每个中间节点都包含k-1个元素和k个孩子,其中 m/2 <= k <= m

3.每一个叶子节点都包含k-1个元素,其中 m/2 <= k <= m

4.所有的叶子结点都位于同一层。

5.每个节点中的元素从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域分划。

第1次磁盘IO:

在内存中定位(和9比较):

第2次磁盘IO:

在内存中定位(和2,6比较):

第3次磁盘IO:

在内存中定位(和3,5比较):

自顶向下查找4的节点位置,发现4应当插入到节点元素3,5之间。

节点3,5已经是两元素节点,无法再增加。父亲节点 2, 6 也是两元素节点,也无法再增加。根节点9是单元素节点,可以升级为两元素节点。于是拆分节点3,5与节点2,6,让根节点9升级为两元素节点4,9。节点6独立为根节点的第二个孩子。

自顶向下查找元素11的节点位置。

删除11后,节点12只有一个孩子,不符合B树规范。因此找出12,13,15三个节点的中位数13,取代节点12,而节点12自身下移成为第一个孩子。(这个过程称为左旋)


  •                     <li class="tool-item tool-active is-like "><a href="javascript:;"><svg class="icon" aria-hidden="true">
                            <use xlink:href="#csdnc-thumbsup"></use>
                        </svg><span class="name">点赞</span>
                        <span class="count">4</span>
                        </a></li>
                        <li class="tool-item tool-active is-collection "><a href="javascript:;" data-report-click="{&quot;mod&quot;:&quot;popu_824&quot;}"><svg class="icon" aria-hidden="true">
                            <use xlink:href="#icon-csdnc-Collection-G"></use>
                        </svg><span class="name">收藏</span></a></li>
                        <li class="tool-item tool-active is-share"><a href="javascript:;"><svg class="icon" aria-hidden="true">
                            <use xlink:href="#icon-csdnc-fenxiang"></use>
                        </svg>分享</a></li>
                        <!--打赏开始-->
                                                <!--打赏结束-->
                                                <li class="tool-item tool-more">
                            <a>
                            <svg t="1575545411852" class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="5717" xmlns:xlink="http://www.w3.org/1999/xlink" width="200" height="200"><defs><style type="text/css"></style></defs><path d="M179.176 499.222m-113.245 0a113.245 113.245 0 1 0 226.49 0 113.245 113.245 0 1 0-226.49 0Z" p-id="5718"></path><path d="M509.684 499.222m-113.245 0a113.245 113.245 0 1 0 226.49 0 113.245 113.245 0 1 0-226.49 0Z" p-id="5719"></path><path d="M846.175 499.222m-113.245 0a113.245 113.245 0 1 0 226.49 0 113.245 113.245 0 1 0-226.49 0Z" p-id="5720"></path></svg>
                            </a>
                            <ul class="more-box">
                                <li class="item"><a class="article-report">文章举报</a></li>
                            </ul>
                        </li>
                                            </ul>
                </div>
                            </div>
            <div class="person-messagebox">
                <div class="left-message"><a href="https://blog.csdn.net/moakun">
                    <img src="https://profile.csdnimg.cn/9/B/9/3_moakun" class="avatar_pic" username="moakun">
                                            <img src="https://g.csdnimg.cn/static/user-reg-year/1x/3.png" class="user-years">
                                    </a></div>
                <div class="middle-message">
                                        <div class="title"><span class="tit"><a href="https://blog.csdn.net/moakun" data-report-click="{&quot;mod&quot;:&quot;popu_379&quot;}" target="_blank">茅坤宝骏氹</a></span>
                                            </div>
                    <div class="text"><span>发布了343 篇原创文章</span> · <span>获赞 509</span> · <span>访问量 123万+</span></div>
                </div>
                                <div class="right-message">
                                            <a href="https://bbs.csdn.net/forums/p-moakun" target="_blank" class="btn btn-sm btn-red-hollow bt-button personal-messageboard">他的留言板
                        </a>
                                                            <a class="btn btn-sm  bt-button personal-watch" data-report-click="{&quot;mod&quot;:&quot;popu_379&quot;}">关注</a>
                                    </div>
                            </div>
                    </div>
    
B树、B-和B+都是一种平衡的多路查找,用于在磁盘等外部存储设备中进行高效的查找操作。 B树是一种平衡的多路查找,每个节点可以存储多个数据,并且每个节点可以有多个子节点。B树的每个节点存储了一定的范围区间,这样可以加快搜索速度。例如,对于1~100的索引值,B树可以将其划分为多个区间,从而一次性排除大部分数据,使搜索更加高效。 B-B树的一种变体,它的每个节点可以存放多个数据和子节点,并且相邻的叶节点之间可以相互连接,这样可以增加区间访问性能,适用于范围查询等操作。 B+也是B树的一种变体,与B树和B-不同的是,B+的叶子节点之间互相连接,而非叶子节点只存储索引信息,数据只存在于叶子节点中。这样可以提高区间查询的性能,并且也适用于范围查询等操作。 总结来说,B树、B-和B+都是一种平衡的多路查找,用于在磁盘等外部存储设备中进行高效的查找操作。它们的区别在于节点的存储方式和叶子节点的连接方式。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [B-B树和B+](https://blog.csdn.net/weixin_42386551/article/details/117604839)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [B-和B+的区别](https://blog.csdn.net/liuyuan1999/article/details/127382525)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值