面试题10:斐波那契数列

一、题目

     写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。其中通项公式如下:

F_{0}=0

F_{1}=1

F_{n}=F_{​{n-1}}+F_{​{n-2}}(n≧2)

 二、解法

2.1 方法一:递归

     分析:很多教科书在讲述递归函数的时候,都会用斐波那契数列作为例子,并不意味着递归解法最适合这道题目,递归解法会有很严重的效率问题。由于是递归调用,每次调用F函数的时候,会导致F(n)重复计算。因为,每个值最终被拆解为F(1) + F(0)。


    如上图想要求F(5), 需要先求 F(3)和F(4), 而想要求F(3)需要先求得F(1)和 F(2)......一层层递归调用,最后得到F(5)= F(1)+F(0)+F(1)+F(0)+F(1)+F(1)+F(0)+F(1) = 8

    我们不难发现,这棵树中有很多节点是重复的,而且重复的节点数会随着n的增大而急剧增大,这意味着计算量会随着n的增大而急剧增大。事实上,用递归的方法计算时间复杂度是以n的指数方式递增的。这个算法的时间复杂度有着跟Fibonacci类似的递推方程:T(n) = T(n - 1) + T(n - 2) + O(1),可以得到时间复杂度为T(n) = O(1.618 ^ n),空间复杂度取决于递归的深度,是O(n)具体的如下:


// ====================方法1:递归====================
long long Fibonacci_Solution1(unsigned int n)
{
    if(n <= 0)
        return 0;

    if(n == 1)
        return 1;

    return Fibonacci_Solution1(n - 1) + Fibonacci_Solution1(n - 2);
}


2.2 方法二:循环

     分析:上述递归代码之所以慢,是因为重复的计算太多,我们只要想办法避免重复的计算就行了,比如我们可以把已经计算的数列中间项保存起来,在下次计算的时候我们先查找一下,如果前面已经计算过就不需要重复计算了。

    更简单的方法是从下往上计算,首先根据F(0)和F(1)算出F(2), 然后再根据F(1)和F(2)算出F(3)……以此类推就可以算出第n项了,这种思路的时间复杂度是O(n),实现代码如下:

// ====================方法2:循环====================
long long Fibonacci_Solution2(unsigned n)
{
    int result[2] = {0, 1};
    if(n < 2)
        return result[n];

    long long  fibNMinusOne = 1;
    long long  fibNMinusTwo = 0;
    long long  fibN = 0;
    for(unsigned int i = 2; i <= n; ++ i)
    {
        fibN = fibNMinusOne + fibNMinusTwo;

        fibNMinusTwo = fibNMinusOne;
        fibNMinusOne = fibN;
    }

     return fibN;
} 
2.3 方法三:时间复杂度O(log n)但不够实用的解法

     通常面试到这里也就差不多了,尽管我们有比这还快的O(log n)算法,由于这种算法需要用到一个很生僻的数学公式,因此很少有面试官会要求我们掌握。

    在介绍这种方法之前需要用到一个公式:

\begin{equation*}
\begin{bmatrix}F_n\\F_{n-1}\end{bmatrix}
=\begin{bmatrix}F_{n-1}+F_{n-2}\\F_{n-1}\end{bmatrix}
=\begin{bmatrix}1\times F_{n-1}+1\times F_{n-2}\\1\times F_{n-1}+0\times F_{n-2}\end{bmatrix}
=\begin{bmatrix}1&1\\1&0\end{bmatrix}\times\begin{bmatrix}F_{n-1}\\F_{n-2}\end{bmatrix}
\end{equation*}
把等式最右边继续算下去,最后得到:
\begin{equation*}
\begin{bmatrix}F_n\\F_{n-1}\end{bmatrix}
=\begin{bmatrix}1&1\\1&0\end{bmatrix}^{n-1}\times\begin{bmatrix}F_{1}\\F_{0}\end{bmatrix}
=\begin{bmatrix}1&1\\1&0\end{bmatrix}^{n-1}\times\begin{bmatrix}1\\0\end{bmatrix}
\end{equation*}

       此要求F(n),只要对这个二阶方阵求n - 1次方,最后取结果方阵第一行第一列的数字就可以了。看起来有点儿化简为繁的感觉,但关键点在于,幂运算是可以二分加速的。设有一个方阵a,利用分治法求a的n次方,有: 

\begin{equation*}
a^n=\begin{cases}
a^{n/2}\times a^{n/2}&,\text{ if }x\text{ is even}\\
a^{(n-1)/2}\times a^{(n-1)/2}\times a&,\text{ if }x\text{ is odd}
\end{cases}
\end{equation*}

可见复杂度满足T(n) = T(n / 2) + O(1),根据Master定理可得:T(n) = O(log n)

// ====================方法3:基于矩阵乘法====================
#include <cassert>

struct Matrix2By2
{
    Matrix2By2
    (
        long long m00 = 0, 
        long long m01 = 0, 
        long long m10 = 0, 
        long long m11 = 0
    )
    :m_00(m00), m_01(m01), m_10(m10), m_11(m11) 
    {
    }

    long long m_00;
    long long m_01;
    long long m_10;
    long long m_11;
};

Matrix2By2 MatrixMultiply
(
    const Matrix2By2& matrix1, 
    const Matrix2By2& matrix2
)
{
    return Matrix2By2(
        matrix1.m_00 * matrix2.m_00 + matrix1.m_01 * matrix2.m_10,
        matrix1.m_00 * matrix2.m_01 + matrix1.m_01 * matrix2.m_11,
        matrix1.m_10 * matrix2.m_00 + matrix1.m_11 * matrix2.m_10,
        matrix1.m_10 * matrix2.m_01 + matrix1.m_11 * matrix2.m_11);
}

Matrix2By2 MatrixPower(unsigned int n)
{
    assert(n > 0);

    Matrix2By2 matrix;
    if(n == 1)
    {
        matrix = Matrix2By2(1, 1, 1, 0);
    }
    else if(n % 2 == 0)
    {
        matrix = MatrixPower(n / 2);
        matrix = MatrixMultiply(matrix, matrix);
    }
    else if(n % 2 == 1)
    {
        matrix = MatrixPower((n - 1) / 2);
        matrix = MatrixMultiply(matrix, matrix);
        matrix = MatrixMultiply(matrix, Matrix2By2(1, 1, 1, 0));
    }

    return matrix;
}

long long Fibonacci_Solution3(unsigned int n)
{
    int result[2] = {0, 1};
    if(n < 2)
        return result[n];

    Matrix2By2 PowerNMinus2 = MatrixPower(n - 1);
    return PowerNMinus2.m_00;
} 
参考资料
1. 计算斐波纳契数,分析算法复杂度
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值