《线性代数及其应用》阅读笔记:一 1.5 线性方程组的解集
文章目录
一、 齐次线性方程组
1.1. 定义
齐次线性方程组:常数项全为零的线性方程组。
形如:
写做:
A
x
⃗
=
0
⃗
A\vec x=\vec 0
Ax=0,其系数矩阵为A- m*n.
经过初等行变换,系数矩阵A化简到行阶梯形矩阵为:
A
′
−
r
A'-r
A′−r(非零行行数)
∗
n
*n
∗n.
1.2. 解集的存在性
1- 齐次线性方程组 解的构成: |
---|
1)平凡解/零解: x ⃗ = 0 ⃗ \vec x=\vec 0 x=0. |
2)非平凡解/非零解:当 x ⃗ \vec x x至少有一个自由变量时。自由变量的变化带来其他变量值的变化。 |
2- 齐次线性方程组 解的情况: |
---|
1)唯一解:即只有平凡解 x ⃗ = 0 ⃗ \vec x=\vec 0 x=0. |
2)无穷解:包括平凡解和非平凡解,此时 x ⃗ \vec x x中至少有一个自由变量。 |
- 齐次线性方程组一定有解- 必有零解,不存在无解的情况。 |
1.3. 求解步骤
- | 齐次线性方程组的求解步骤 |
---|---|
1. | 系数矩阵A 初等行变换, 化为行阶梯形矩阵A’; |
2. | - 若r(A)=r=n(有效方程个数=未知量的个数),则原方程组仅有零解,即
x
⃗
=
0
⃗
\vec x=\vec0
x=0,求解结束; - 若r(A)=r<n(有效方程个数<未知量的个数),则原方程组有非零解,进行以下步骤: |
3. | 继续将系数矩阵A化为行最简形矩阵,并写出同解方程组; |
4. | 选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,得到通解. |
1.4. 解集的性质
3- 齐次线性方程组 解的性质: | |
---|---|
1)唯一解 | 2)无穷解 |
未知数个数n(列)=有效方程个数r(行) | 未知数个数n(列)>方程个数m(行) |
rank(A)=n | rank(A)<n |
detA≠0/A≠0 | detA==0 |
两个解的和仍是齐次线性方程组的一组解。 | |
解的k倍仍然是齐次线性方程组的解。 |
二、非齐次线性方程组
2.1. 定义
非齐次线性方程组:常数项不全为零的线性方程组。
写做:
A
x
⃗
=
b
⃗
A\vec x=\vec b
Ax=b,其系数矩阵为A- m*n.
经过初等行变换,系数矩阵A化简到行阶梯形矩阵为:
A
′
−
r
A'-r
A′−r(非零行行数)
∗
n
*n
∗n.
[PS:r(A)表示系数矩阵的秩,r(A,b)表示增广矩阵的秩]
2.2. 解集的存在性
1- 非齐次线性方程组 的通解: |
---|
x
⃗
=
p
⃗
+
t
v
⃗
\vec x=\vec p+t\vec v
x=p+tv, 其中, p ⃗ \vec p p是特解, x ⃗ = t v ⃗ \vec x=t\vec v x=tv是齐次线性方程组 A x ⃗ = 0 ⃗ A\vec x=\vec 0 Ax=0的解。 |
理解:非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*) |
几何意义:通过 p ⃗ \vec p p 且与 v ⃗ \vec v v 平行的直线方程。 |
2- 非齐次线性方程组 解的存在性: |
---|
1)唯一解:即只有平凡解 x ⃗ = 0 ⃗ \vec x=\vec 0 x=0。 |
2)无穷解:解 x ⃗ \vec x x 中至少有一个自由变量。 |
3)无解。 |
2.3. 求解步骤
- | 非齐次线性方程组的求解步骤 |
---|---|
1. | 增广矩阵(A,b) 初等行变换, 化为行阶梯形矩阵(A,b)’; |
2. | - 若r(A)<r(A,b),则方程组无解; - 若r(A)=r(A,b),则原方程组有解,进一步将增广矩阵化为行最简形; |
3. | - 若r(A)=n,则方程组有唯一解; - 若r(A)<n,则方程组有无穷解,进行以下步骤: |
4. | 选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,得到通解. |
2.4. 解集的性质
3- 非齐次线性方程组 解的性质: | |
---|---|
1)无解 | 2)有解 |
系数矩阵的秩<增广矩阵的秩 | 系数矩阵的秩=增广矩阵的秩 |
r(A)<r(A,b) | r(A)=r(A,b) |
出现形如‘{0=b}’的方程 | 不存在‘0=b’ |
4- 非齐次线性方程组 有解时 的性质: | |
---|---|
1)唯一解 | 2)无穷解 |
未知数个数n(列)=有效方程个数r(行) | 未知数个数n(列)>化简后有效方程个数r(行) |
r(A)=r(A,b)=n | r(A)=r(A,b)<n |