涵星同学
码龄8年
关注
提问 私信
  • 博客:229,338
    229,338
    总访问量
  • 36
    原创
  • 1,280,470
    排名
  • 94
    粉丝

个人简介:Just write down in here.

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2016-12-08
博客简介:

微澜同学

查看详细资料
个人成就
  • 获得93次点赞
  • 内容获得27次评论
  • 获得530次收藏
  • 代码片获得246次分享
创作历程
  • 2篇
    2022年
  • 2篇
    2021年
  • 4篇
    2019年
  • 37篇
    2018年
成就勋章
TA的专栏
  • 策略产品
    3篇
  • 数据挖掘
  • NLP
    24篇
  • 机器学习基础
    9篇
  • 数据新闻
    4篇
  • Python
    6篇
  • 深度学习
    3篇
  • Internet
    2篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

推荐系统(业务侧)小结

本文分别从一个业务人员、一个技术人员、一个普通用户的角度来聊聊推荐系统/场景,本文分为三部分来阐述一、业务人员如果看待推荐场景?如果更好地使用推荐来反哺业务?二、推荐系统的基本框架是什么?技术人员在构建推荐系统的过程中,常用的推荐算法有哪些?...
原创
发布博客 2022.07.29 ·
448 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ANTLR实践

“除草帖。翻到了几年前做的一个语言解析的小项目,感觉笔记躺在自己笔记本里挺浪费,放在博客上或许还能体现点价值”。
原创
发布博客 2022.04.20 ·
592 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

策略产品函数方法论——评估

在机器学习常用性能指标及sklearn中的模型评估一文中已对相对宏观的模型评价指标进行了描述,并给出了在sklearn中具体的实现方法,主要包括准确率、精确率、召回率,ROC曲线,那在策略产品工作中,如何进行业务函数的评估?1. 评估前的样本切分...
原创
发布博客 2021.03.22 ·
353 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

策略产品函数方法论——特征

题记:本文是结合个人学习工作经历对《策略产品经理——模型与方法论》一书的消化笔记,仅做记录,无其他用途,侵删。在应用机器学习算法模型解决业务问题的场景下,相较于算法工程师关注的特征处理及特征工程,策略产品工作更侧重于对有效特征的选择,以下正文内容分为两个主要部分:一是特征选择的原则,二是特征选择的方法。1. 特征选择的原则1.1 注意特征的时效性,不使用未来信息作为模型预测的特征举个栗子,对于内容风控问题,用户对于内容的投诉动作能否作为输入特征?当然不能,原因有二:一,这类特征是在业务当前场
原创
发布博客 2021.03.14 ·
370 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

人物关系抽取——基于特征工程

本文代码,不得转载。# -*- coding: utf-8 -*-# Author: lx# extract features from the textimport pandas as pdimport numpy as npfrom text1 import CountVectorizerfrom sklearn.feature_extraction.text import...
原创
发布博客 2019.07.15 ·
791 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

爬虫概念及框架梳理

爬虫概念及框架梳理
原创
发布博客 2019.04.30 ·
288 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

使用NLTK+StanfordNLP进行文本特征提取

文章为自己的实践记录及总结,多有疏忽,恐有错误......文本特征提取是基于特征向量的自然语言处理方法的基本技术,常用的提取自文本的特征主要包括词汇特征、位置特征、句法特征、语义特征。其中,词汇特征包括词性、上下文词汇、命名实体等;位置特征如命名实体之间的间隔距离;句法特征提取主要包括句法分析及依存句法分析。常用的特征获取工具有StanfordNLP和LTP(哈工大社会计算与信息检索研究中心研...
原创
发布博客 2019.01.10 ·
2604 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

用sklearn进行特征提取及数值转换

对自己目前常用的几种特征提取方法做个简要总结。1,将文本数据转化为特征向量(其中CountVectorizer只考虑词汇在文本中出现的频率)from sklearn.feature_extraction.text import CountVectorizerfrom sklearn.feature_extraction.text import TfidfTransformerwor...
原创
发布博客 2019.01.10 ·
2483 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Neo4j(二):节点和关系文件导入

首先,在Neo4j中打开Database所在的目录文件夹,在目录下的import文件夹下存放需要载入的csv文件(因为Neo4j默认是从打开地址目录下的import中读出,所以需要在此目录下创建csv文件,否则在Neo4j中执行载入命令会出现找不到文件的情况。)csv节点文件的载入下面是结点文件中的内容,主要字段包括id,name,position在Neo4j的命令行输入并执行以下...
原创
发布博客 2018.11.26 ·
9480 阅读 ·
1 点赞 ·
3 评论 ·
19 收藏

TensorFlow学习(三):CNN-Relation-Extraction

cnn_relation_extraction部分记录import tensorflow as tfimport numpy as npimport osimport datetimeimport timefrom cnn_relation_extraction_master.text_cnn import TextCNNfrom cnn_relation_extraction_...
原创
发布博客 2018.11.18 ·
885 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

sklearn: OneVsRestClassifier实现多分类 + Grid_Search获取模型的最佳参数

一,sklearn分类器单一分类器 & 集成分类器 https://www.cnblogs.com/hhh5460/p/5132203.html使用sklearn https://www.jianshu.com/p/516f009c0875sklearn通过OneVsRestClassifier实现svm.SVC的多分类 https://blog.csdn.net/xiaodo...
原创
发布博客 2018.09.26 ·
12971 阅读 ·
10 点赞 ·
0 评论 ·
45 收藏

损失函数 loss function 总结(转)

目标函数,或称损失函数,是网络中的性能函数,也是编译一个模型必须的两个参数之一。由于损失函数种类众多,下面以keras官网手册的为例。在官方keras.io里面,有如下资料: mean_squared_error或mse mean_absolute_error或mae mean_absolute_percentage_error或mape mean_squa...
转载
发布博客 2018.09.26 ·
4267 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

机器学习常用性能指标及sklearn中的模型评估

一,机器学习常用性能指标总结(转载并稍作修改和补充)在机器学习中,性能指标(Metrics)是衡量一个模型好坏的关键,通过衡量模型输出y_predict 和 y_true之间的某种"距离"得出的。性能指标往往是我们做模型时的最终目标,如准确率,召回率,敏感度等等,但是性能指标常常因为不可微分,无法作为优化的loss函数,因此采用如cross-entropy, rmse等“距离”可微函数...
转载
发布博客 2018.09.17 ·
17983 阅读 ·
7 点赞 ·
3 评论 ·
88 收藏

【转载】RSS原理、创建及使用

最近需要接触RSS Feed,知其然还要知其所以然。https://www.xul.fr/en-xml-rss.html#spec本文转自RSS原理、创建及使用——Denis Sureau很郁闷的是Google Reader倒了才开始使用RSS阅读,InoReader是一个不错的替代。对于RSS的原理想要有个了解,但是网上的资料说得不是很清晰。有一篇CSDN的RSS原理和实现博文也不错...
转载
发布博客 2018.08.06 ·
2569 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

分类前之数据预处理

之前在情感分析方法之nltk情感分析器和SVM分类器(二)一文中的第二部分,仅仅记录了最后一步分类器的处理,现在想要把前四步也记录下来。1. 原始语料的规整# -*- coding: utf-8 -*-# 获取正负向语料库与停用词词典# 将原始数据规整到一个txt文件中import os# 文件夹及结果文件的存储路径path = r"D:/file_download/Bai...
原创
发布博客 2018.08.05 ·
2248 阅读 ·
0 点赞 ·
1 评论 ·
4 收藏

知识图谱之知识表示

先上两个狠全面的综述或者叫总结:《知识表示学习研究进展》 基于翻译模型(Trans系列)的知识表示学习然后是清华大学开源OpenKE:知识表示学习平台“表示学习旨在将研究对象的语义信息表示为稠密低维实值向量,知识表示学习主要是面向知识图谱中的实体和关系进行表示学习。使用建模方法将实体和向量表示在低维稠密向量空间中,然后进行计算和推理。”知识表示的几个代表模型:距离模型、单层神经网络...
原创
发布博客 2018.08.05 ·
12266 阅读 ·
2 点赞 ·
0 评论 ·
31 收藏

知识图谱入门2

对知识图谱的知识体系做一下简单的概括,很粗略,就当大纲用好了。补充知识图谱的概述性文章:知识图谱研究进展 知识图谱中的关系推理 其他博客 语义网络,语义网,链接数据和知识图谱...
原创
发布博客 2018.08.03 ·
716 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

知识图谱入门

本文转自刘知远新浪博客2.1  什么是知识图谱在互联网时代,搜索引擎是人们在线获取信息和知识的重要工具。当用户输入一个查询词,搜索引擎会返回它认为与这个关键词最相关的网页。从诞生之日起,搜索引擎就是这样的模式。直到2012年5月,搜索引擎巨头谷歌在它的搜索页面中首次引入“知识图谱”:用户除了得到搜索网页链接外,还将看到与查询词有关的更加智能化的答案。如图2.1所示,当用户输入“Marie Curi...
转载
发布博客 2018.06.27 ·
3728 阅读 ·
3 点赞 ·
1 评论 ·
21 收藏

Tensorflow学习(二):文本分类

点击打开链接一点击打开链接二TensorFlow如何工作?什么是机器学习模型,什么是神经网络?,神经网络如何学习,如何处理数据并将其传递给神经网络输入,如何运行模型并获得预测结果?用神经网络和TensorFlow进行文本分类# -*- coding:utf-8 -*-# 用神经网络和TensorFlow分类文本import numpy as npimport tensorflow as t...
原创
发布博客 2018.05.10 ·
666 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Tensorflow学习(一)

一,了解Tensorflow安装:支持python2和3,直接pip install tensorflow即可(win10)http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/word2vec.html中文文档:http://cwiki.apachecn.org/pages/viewpage.action?pageId=10030...
原创
发布博客 2018.05.10 ·
278 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏
加载更多