Java集合之PriorityQueue优先级队列

一.PriorityQueue的数据结构

优先级队列本质是通过二叉堆实现的。因此在对优先级队列的集合进行学习之前,需要了解一下堆这种数据结构。堆其实就是一棵完全二叉树,可以分为大根堆和小根堆。

小根堆:父节点小于子节点

大根堆:父节点大于子节点。(图的结构原理同上)

二.PriorityQueue的源码分析

1.继承关系

public class PriorityQueue<E> extends AbstractQueue<E>
    implements java.io.Serializable

继承自AbstractQueue,实现了Serializable接口

2.相关的属性

private static final long serialVersionUID = -7720805057305804111L;

    private static final int DEFAULT_INITIAL_CAPACITY = 11;//队列默认初始容量为11

    private transient Object[] queue;//存放队列元素的Object数组

    private int size = 0;//队列的长度

    private final Comparator<? super E> comparator;//比较器

    private transient int modCount = 0;//被修改的次数

3.构造函数

①无参构造函数:

优先级队列的大小为11,队列中的元素采用自然顺序排序

public PriorityQueue() {
        this(DEFAULT_INITIAL_CAPACITY, null);
    }

②带参构造函数

优先级队列大小为指定容量大小,队列中的元素采用自然顺序排序

public PriorityQueue(int initialCapacity) {
        this(initialCapacity, null);
    }

指定容量,按指定比较器排序

public PriorityQueue(int initialCapacity,
                         Comparator<? super E> comparator) {
        // Note: This restriction of at least one is not actually needed,
        // but continues for 1.5 compatibility
        if (initialCapacity < 1)
            throw new IllegalArgumentException();
        this.queue = new Object[initialCapacity];
        this.comparator = comparator;
    }

4.主要方法

①add()方法,向队列中添加元素。

public boolean add(E e) {
        return offer(e);
    }

我们发现add方法实际上调用了offer方法,这个方法的源码来瞅一下

为什么要向上调整?当然是为了满足小根堆的特点了。每一次插入先将元素插在队列末尾,依次向上调整,使得父节点总比子节点小。以图为例

   初始状态

 向上调整一次

再次向上调整,使得2跑到了堆顶(堆顶就是最小元素)

看一看siftUp函数的底层实现

//k为要插入的位置,x为插入的元素
private void siftUpComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>) x;
        while (k > 0) {
            int parent = (k - 1) >>> 1;//父节点的下标
            Object e = queue[parent];//父节点的元素
            if (key.compareTo((E) e) >= 0)//x比e大就跳出循环,即找到了x应该插入的位置
                break;
            queue[k] = e;
            k = parent;
        }
        queue[k] = key;
    }
//同理
private void siftUpUsingComparator(int k, E x) {
        while (k > 0) {
            int parent = (k - 1) >>> 1;
            Object e = queue[parent];
            if (comparator.compare(x, (E) e) >= 0)//x>=e
                break;
            queue[k] = e;
            k = parent;
        }
        queue[k] = x;
    }

②peek():获取堆顶元素

public E peek() {
        if (size == 0)
            return null;
        return (E) queue[0];//返回下标为0位置即堆顶位置的元素
    }

③poll():删除堆顶元素,并返回堆顶。

删除的流程:取出queue[0]元素,然后将queue[size-1]插入到queue[0],然后向下调整保证小根堆的特点

public E poll() {
        if (size == 0)//队列中没有元素
            return null;
        int s = --size;//队列长度减一
        modCount++;
        E result = (E) queue[0];//要删除的元素
        E x = (E) queue[s];//最后一个位置的元素
        queue[s] = null;//删掉
        if (s != 0)
            siftDown(0, x);
        return result;
    }

接下来看siftDown()

private void siftDown(int k, E x) {
        if (comparator != null)
            siftDownUsingComparator(k, x);
        else
            siftDownComparable(k, x);
    }

private void siftDownComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>)x;
        int half = size >>> 1;  
        while (k < half) {
            int child = (k << 1) + 1; //左孩子下标
            Object c = queue[child];//左孩子位置上的元素
            int right = child + 1;//右孩子下标
            if (right < size &&
                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)//下标未越界并且左孩子比右孩子大
                c = queue[child = right];//c中存储的实际上是左右孩子中较小元素
            if (key.compareTo((E) c) <= 0)//要插入元素比较小的孩子小,跳出循环
                break;
            queue[k] = c;
            k = child;
        }
        queue[k] = key;
    }




④remove(Object o):删除指定元素 
 

public boolean remove(Object o) {
        int i = indexOf(o);
        if (i == -1)
            return false;
        else {
            removeAt(i);
            return true;
        }
    }

remove(Object o)方法的思想为: 
1)找到这个元素在数组中的位置,如果没有找到,则直接返回false。否则进行2

2)调用removeAt进行删除并调整操作。

⑤clear():清空队列元素

public void clear() {
        modCount++;
        for (int i = 0; i < size; i++)
            queue[i] = null;
        size = 0;
    }


三. 用PriorityQueue实现大根堆

PriorityQueue默认实现的是小根堆,可以通过以下方法实现大根堆

PriorityQueue<Integer> maxHeap=new PriorityQueue<Integer>(10, new Comparator<Integer>() {
        @Override
        public int compare(Integer o1, Integer o2) {                
            return o2-o1;
        }
    });

重写比较器里的compare方法即可

四.例:统计十万个数据重复次数最少的十个

可以使用大根堆

public static void ReMinTen(){
		/**
		 * 重复次数最少的十位数
		 */
		PriorityQueue<Map.Entry<Integer, Integer>> q = new PriorityQueue<Map.Entry<Integer, Integer>>(10,new Comparator<Map.Entry<Integer, Integer>>(){
				@Override
				public int compare(Map.Entry<Integer, Integer> o1, Map.Entry<Integer, Integer> o2) {
					return o2.getValue() - o1.getValue();
				}
		});
		HashMap<Integer,Integer> map = new HashMap<Integer,Integer>();
		/**
		 * 给 HashMap 赋值
		 */
		for(int i = 0; i < 100000;i++){
			Random random = new Random();
			int key = random .nextInt(10000);//键
			if(map.containsKey(key)){//如果 map 已经包含了这个键.使它的 value 加1.
				int value = map.get(key); 
				map.put(key,value + 1);
			}else{
				map.put(key,1);
			}
		}
		/**
		 * 对键值对遍历
		 */
		Iterator<Map.Entry<Integer, Integer>> iterator = map.entrySet().iterator();
		/**
		 * 遍历 HashMap 并把里面的值加入到队列中
		 */
		while(iterator.hasNext()){
			Map.Entry<Integer, Integer> next = iterator.next();
			Integer key = next.getKey(); 
			Integer value = next.getValue();
			if(q.size() < 10){
				q.add(next);
			}else{
				if(value < q.peek().getValue()){
					q.remove();
					q.add(next);
				}
			}
		}
		for(int i =0 ;i < q.size();){
			System.out.print(q.remove() + " ");
		}
	}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值