二叉树在图论中是这样定义的:二叉树是一个连通的无环图,并且每一个顶点的度不大于3。有根二叉树还要满足根结点的度不大于2。有了根结点之后,每个顶点定义了唯一的父结点,和最多2个子结点。然而,没有足够的信息来区分左结点和右结点。如果不考虑连通性,允许图中有多个连通分量,这样的结构叫做森林。
这里,我使用javascript来写二叉树遍历的三种非递归方式,因为楼主学的是javascript,对于C,JAVA,C++这个都不是很熟,所以就只好使用javascript代替;
前序遍历
第一种方法:
var preorderTraversal = function(root) {
var stack = [];
var res = [];
var p = root;
if(root == null)return [];
while(stack.length!=0 || p!=null){
//Side by side to join the array, and deposited in the stack, the future need to use these root nodes into the right sub-tree
while(p!=null){
stack.push(p);
res.push(p.val);
p = p.left;
}
// When p is empty, it means that both the root and the left subtree are traversed, and the right tree goes
if(stack.length!=0){
p = stack.pop();
p = p.right;
}
}
return res;
};
前序遍历第二种方法:
var preorderTraversal = function(root) {
var result = [];
var stack = [];
var p = root;
while(stack.length!=0 || p != null) {
if(p != null) {
stack.push(p);
result.push(p.val); // Add before going to children
p = p.left;
} else {
var node = stack.pop();
p = node.right;
}
}
return result;
};
中序遍历
第一种方法:
var inorderTraversal = function(root) {
var stack = [];
var res = [];
var p = root;
if(root == null) return [];
while( stack.length!=0 || p!=null){
while(p!=null){
stack.push(p);
p = p.left;
}
if(stack.length!=0){
p= stack.pop();
res.push(p.val);
p = p.right;
}
}
return res;
};
第二种方法:
var inorderTraversal = function(root) {
var result = [];
var stack = [];
var p = root;
while(stack.length!=0 || p != null) {
if(p != null) {
stack.push(p);
p = p.left;
} else {
var node = stack.pop();
result.push(node.val); // Add after all left children
p = node.right;
}
}
return result;
};
后序遍历
第一种方法:
var postorderTraversal = function(root) {
var Stack = [];
var result = [];
if(root==null)
return [];
Stack.push(root);
while(Stack.length!=0)
{
var node= Stack.pop();
result.push(node.val);
if(node.left)
Stack.push(node.left);
if(node.right)
Stack.push(node.right);
}
return result.reverse();
};
第二种方法:
var postorderTraversal = function(root) {
var result = [];
var stack = [];
var p = root;
while(stack.length!=0 || p != null) {
if(p != null) {
stack.push(p);
result.unshift(p.val); // Reverse the process of preorder
p = p.right; // Reverse the process of preorder
} else {
var node = stack.pop();
p = node.left; // Reverse the process of preorder
}
}
return result;
};