小希的迷宫
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 61080 Accepted Submission(s): 19171
Problem Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 45 6 0 08 1 7 3 6 2 8 9 7 57 4 7 8 7 6 0 03 8 6 8 6 45 3 5 6 5 2 0 0-1 -1
Sample Output
YesYesNo
Author
Gardon
Source
看似一道水题。除了输入有点麻烦
中文题意不解释。
一开始想如果这给出的图是一棵树的话,那么整个图就符合条件输出Yes
耿直的数边和数顶点个数。如果边的数目等于顶点数目减一Yes Else No
然后wa了
然后想到题目给的可能不止一个集合,而题目要求的应该是每一个给出的房间号都要联通,这样就不能只数边了。
要用到并查集判是否联通。
所以其实把题目转换一下就是满足下列两个条件的符合
1.没有环
2.图联通
所以并查集判断每个的祖先是否相等,然后用还是一样判断边的个数和顶点个数的关系。
因为如果整个图联通并且边=顶点-1必然是一棵树(我猜的、)
看了一下其他题解发现大家都是用并查集判环的。
那我也学一下吧:如果输入的两个房间号发现他们的祖先相同,说明产生环了,直接就out了。
还有个坑点就是如果是一棵空树即0 0要输出yes
其实数据很弱判断边和顶点个数就可以了之前wa是没有考虑到空树
以上
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <set>
#include <map>
#include <vector>
#define vi vector<int>
#define P pair<int,int>
using namespace std;
const int MAX_N = 4e5 + 10;
int par[MAX_N];
int Rank[MAX_N];
bool repair[MAX_N];
P p[MAX_N];
int n,m;
void init()
{
memset(Rank, 0,sizeof(Rank));
for(int i = 0; i <= MAX_N; i++)
par[i] = i;
}
int Find(int i)
{
if(par[i] == i)
return i;
return par[i] = Find(par[i]);
}
void unite(int x, int y)
{
x = Find(x);
y = Find(y);
if(Rank[x] < Rank[y])
par[x] = y;
else
{
par[y] = x;
if(Rank[x] == Rank[y])
Rank[x]++;
}
}
bool same(int x, int y)
{
return Find(x) == Find(y);
}
int main()
{
// freopen("out.txt","w",stdout);
ios::sync_with_stdio(false);
cin.tie(0);
int n, m;
set<int> q;
cin >> n >> m;
while(!(n == -1 && m == -1))
{
if(n == 0 && m == 0)
{
cout << "Yes" << endl;
cin >> n >> m;
continue;
}
init();
q.clear();
q.insert(m); q.insert(n);
unite(n, m);
int cnt_edge = 1;
while(cin >> n >> m && (n || m))
{
q.insert(n);q.insert(m);
unite(n, m);
cnt_edge++;
}
int flag = 1;
vi p;
for(auto a:q)
{
p.push_back(Find(a));
if(Find(a) != p[0])
{
flag = 0;
break;
}
}
if(flag && cnt_edge == q.size() - 1) cout << "Yes" <<endl;
else cout << "No" << endl;
cin >> n >> m;
}
return 0;
}