2015蓝桥杯——密文搜索

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_38052999/article/details/71436676

福尔摩斯从X星收到一份资料,全部是小写字母组成。
他的助手提供了另一份资料:许多长度为8的密码列表。
福尔摩斯发现,这些密码是被打乱后隐藏在先前那份资料中的。
请你编写一个程序,从第一份资料中搜索可能隐藏密码的位置。要考虑密码的所有排列可能性。
数据格式:
输入第一行:一个字符串s,全部由小写字母组成,长度小于1024*1024
紧接着一行是一个整数n,表示以下有n行密码,1<=n<=1000
紧接着是n行字符串,都是小写字母组成,长度都为8
要求输出:
一个整数, 表示每行密码的所有排列在s中匹配次数的总和。

例如:
用户输入:
aaaabbbbaabbcccc
2
aaaabbbb
abcabccc
则程序应该输出:
4
这是因为:第一个密码匹配了3次,第二个密码匹配了1次,一共4次。
资源约定:
峰值内存消耗 < 512M
CPU消耗 < 3000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。

提交时,注意选择所期望的编译器类型。

解题要点:题目中说“要考虑密码的所有排列可能性”,这句话的意思就是只要S子串与当前预支匹配的密码串中各个字母出现的个数相同,那么就算匹配成功

C++代码:

#include <iostream>
#include <stdio.h>
#include <string.h>
#define maxsize 1024*1024
using namespace std;
void fun(int start,int step,int *dcount,char *s,char **temp,int **b)
{
    int i;                             //每次与S匹配时实质上是匹配的其长度为8的子串
    int b1[26]={0};                    //start为每次匹配的子串的开始位置,结束位置就是开始位置+8
    for(i=start;i<start+8;i++)         //step表示的是输入的第几个密码,位置从0开始
        b1[s[i]-'a']++;               //dcount用来存放每个密码匹配的次数
    for(i=0;i<26;i++)                  //b用来存放的是每个子密码中个数字母出现的个数(eg.b[0][0]就是代表第一个密码中a出现的次数,b[0][1]就是第一个子密码中b出现的次数
        if(b1[i]!=b[step][i])          //b1是用来存放当前匹配的S子串中各个字母出现的次数
            break;
    if(i==26)
        dcount[step]++;
}
void fun1(int n,int **d,char **temp)
{
   for(int i=0;i<8;i++)
        d[n][temp[n][i]-'a']++;
}
int main()
{
    char s[maxsize];
    int start,step;
    int *dcount;
    int **d;
    int n,result=0;
    gets(s);
    int t=strlen(s);
    cin>>n;
    fflush(stdin);
    char **temp;
    temp=new char *[n];
    for(int i=0;i<n;i++)
        temp[i]=new char[9];
    for(int i=0;i<n;i++)
    {
        gets(temp[i]);
        fflush(stdin);
    }
    dcount=new int[n];
    for(int i=0;i<n;i++)
        dcount[i]=0;
    d=new int*[n];            //初始化
    for(int i=0;i<n;i++)
        d[i]=new int[26];
    for(int i=0;i<n;i++)
        for(int j=0;j<26;j++)
            d[i][j]=0;
    for(int i=0;i<n;i++)
        fun1(i,d,temp);
    for(start=0;start<=t-8;start++)
        for(step=0;step<n;step++)
        {
            fun(start,step,dcount,s,temp,d);
        }
    for(int i=0;i<n;i++)
        result+=dcount[i];
    cout<<result;
    return 0;
}
阅读更多
换一批

没有更多推荐了,返回首页