二手车价格预测
文章平均质量分 90
justhunder
这个作者很懒,什么都没留下…
展开
-
Task5 模型融合
回归\分类概率-融合: 简单加权平均,结果直接融合 ## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值 test_pre1 = [1.2, 3.2, 2.1, 6.2] test_pre2 = [0.9, 3.1, 2.0, 5.9] test_pre3 = [1.1, 2.9, 2.2, 6.0] # y_test_true 代表第模型的真实值 y_test_true = [1, 3, 2, 6] import numpy as np import pandas as pd原创 2021-04-24 17:04:09 · 118 阅读 · 0 评论 -
Task4 建模调参
读取数据 import pandas as pd import numpy as np import warnings warnings.filterwarnings('ignore') #reduce_mem_usage 函数通过调整数据类型,减少数据在内存中占用的空间 def reduce_mem_usage(df): """ iterate through all the columns of a dataframe and modify the data type to r原创 2021-04-22 17:13:54 · 208 阅读 · 0 评论 -
Task3 特征工程
特征工程 导入数据 import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt import seaborn as sns from operator import itemgetter %matplotlib inline train = pd.read_csv('train.csv', sep=' ') test = pd.read_csv('testA.csv', sep=' ')原创 2021-04-19 14:29:53 · 137 阅读 · 0 评论 -
Task2 数据分析
数据探索性分析 #导入warnings包,利用过滤器来实现忽略警告语句。 import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import missingno as msno 载入数据 ## 1) 载入训练集和测试集; Train_data = pd.read_csv('t原创 2021-04-16 10:06:54 · 180 阅读 · 0 评论