按位与:
n&(n-1):将n的二进制表示中的最低位为1 的改为0,
比如 n=100110
n-1=100101
n&(n-1)=100100
即最低位为1的那位变为0
运用:
1.判断一个数是否是2的方幂:
(n&(n-1))==0, 表示n与(n-1)的二进制形式没有在同一个位置都为1的时候,原因如下:
n与(n-1)的低位不一样,知道有个转折点,就是借位的那个点,从这个点开始到高位,n与(n-1)都一样,如果高位都一样就造成有一个问题,就是n与(n-1)在相同的位上可能会有同一个1,使得(n&(n-1))!=0,如果要使(n&(n-1))==0,则高位全为0,所以n是2的幂或者0.
2. 求一个数的二进制表示中1的个数
有多少个1,n&(n-1)就可以循环多少次
3. 计算n!的质因数2的个数
容易得出N!质因数2的个数f(n) = (n/2) + (n/4) + (n/8) + (n/16) + ...
下面通过一个简单的例子来推导一下过程:N = 10101(二进制表示)
现在我们跟踪最高位的1,不考虑其他位假定为0,
则在
[N / 2] 01000
[N / 4] 00100
[N / 8] 00010
[N / 16] 00001
则所有相加等于01111 = 10000 - 1
由此推及其他位可得:(10101)!的质因数2的个数为10000 - 1 + 00100 - 1 + 00001 - 1 = 10101 - 3(二进制表示中1的个数)