一、Numpy的几种属性
- ndim 维度
- shape 行数和列数
- size 元素个数
使用`numpy`首先要导入模块
import numpy as np #为了方便使用numpy 采用np简写
array = np.array([[1,2,3],[2,3,4]]) #列表转化为矩阵
print(array)
print('number of dim:',array.ndim) # 维度
print('shape :',array.shape) # 行数和列数
print('dtype:',array.dtype) # 元素类型
print('size:',array.size) # 元素个数
二、Numpy创建array
- array 创建数组
- dtype 指定数据类型
- zeros 创建数据全为0
- ones 创建数据全为1
- empty 创建数据接近0
- arrange 按指定范围创建数据
- linspace 创建线段
代码:
# 创建数据
a = np.array([2,23,4]) # list 1d
print(a)
# [2 23 4]
# 指定数据 dtype
a = np.array([2, 23, 4], dtype=np.int)
print(a.dtype)
# int64
a = np.array([2,23,4],dtype=np.int32)
print(a.dtype)
# int32
a = np.array([2,23,4],dtype=np.float)
print(a.dtype)
# float64
a = np.array([2,23,4],dtype=np.float32)
print(a.dtype)
# float32
# 创建特定数据
a = np.array([[2,23,4],[2,32,4]]) # 2d 矩阵 2行3列
print(a)
"""
[[ 2 23 4]
[ 2 32 4]]
"""
# 创建全零数组
a = np.zeros((3,4)) # 数据全为0,3行4列
"""
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
"""
# 创建全一数组, 同时也能指定这些特定数据的 dtype:
a = np.ones((3,4),dtype = np.int) # 数据全为1,3行4列
"""
array([[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]])
"""
# 创建全空数组, 其实每个值都是接近于零的数
a = np.empty((3,4)) # 数据为empty,3行4列
"""
array([[ 0.00000000e+000, 4.94065646e-324, 9.88131292e-324,
1.48219694e-323],
[ 1.97626258e-323, 2.47032823e-323, 2.96439388e-323,
3.45845952e-323],
[ 3.95252517e-323, 4.44659081e-323, 4.94065646e-323,
5.43472210e-323]])
"""
# 用 arange 创建连续数组
a = np.arange(10,20,2) # 10-19 的数据,2步长
"""
array([10, 12, 14, 16, 18])
"""
# 使用 reshape 改变数据的形状
a = np.arange(12).reshape((3,4)) # 3行4列,0到11
"""
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
"""
# 用 linspace 创建线段型数据
a = np.linspace(1,10,20) # 开始端1,结束端10,且分割成20个数据,生成线段
"""
array([ 1. , 1.47368421, 1.94736842, 2.42105263,
2.89473684, 3.36842105, 3.84210526, 4.31578947,
4.78947368, 5.26315789, 5.73684211, 6.21052632,
6.68421053, 7.15789474, 7.63157895, 8.10526316,
8.57894737, 9.05263158, 9.52631579, 10. ])
"""
# 同时也能进行 reshape 工作:
a = np.linspace(1,10,20).reshape((5,4)) # 更改shape
"""
array([[ 1. , 1.47368421, 1.94736842, 2.42105263],
[ 2.89473684, 3.36842105, 3.84210526, 4.31578947],
[ 4.78947368, 5.26315789, 5.73684211, 6.21052632],
[ 6.68421053, 7.15789474, 7.63157895, 8.10526316],
[ 8.57894737, 9.05263158, 9.52631579, 10. ]])
"""
三、Numpy基础运算
import numpy as np
a=np.array([10,20,30,40]) # array([10, 20, 30, 40])
b=np.arange(4) # array([0, 1, 2, 3])
# 减法
c=a-b # array([10, 19, 28, 37])
# 加法
c=a+b # array([10, 21, 32, 43])
# 乘法
c=a*b # array([ 0, 20, 60, 120])
# 乘方:需要使用`**`
c=b**2 # array([0, 1, 4, 9])
# 三角函数运算(以`sin`函数为例)
c=10*np.sin(a)
# array([-5.44021111, 9.12945251, -9.88031624, 7.4511316 ])
# 除了函数应用外,在脚本中对`print`函数进行一些修改可以进行逻辑判断:
print(b<3)
# array([ True, True, True, False], dtype=bool)
多行多维度的矩阵进行操作
# 构建数据
a=np.array([[1,1],[0,1]])
b=np.arange(4).reshape((2,2)) #转换成2行2列
print(a)
# array([[1, 1],
# [0, 1]])
print(b)
# array([[0, 1],
# [2, 3]])
# Numpy中的矩阵乘法分为两种, 其一是前文中的对应元素相乘,其二是标准的矩阵乘法运算
c_dot = np.dot(a,b)
# array([[2, 4],
# [2, 3]])
# 除此之外还有另外的一种关于`dot`的表示方法,即:
c_dot_2 = a.dot(b)
# array([[2, 4],
# [2, 3]])
sum(), min(), max()的使用
# 构造数据
import numpy as np
a=np.random.random((2,4)) #2行4列
print(a)
# array([[ 0.94692159, 0.20821798, 0.35339414, 0.2805278 ],
# [ 0.04836775, 0.04023552, 0.44091941, 0.21665268]])
```
# sum(), min(), max()函数使用
np.sum(a) # 4.4043622002745959
np.min(a) # 0.23651223533671784
np.max(a) # 0.90438450240606416
# 对行或者列进行查找运算,就需要在上述代码中为 `axis` 进行赋值。 当`axis`的值为`0`的时候,将会以列作为查找单元, 当`axis`的值为`1`的时候,将会以行作为查找单元。
print("a =",a)
# a = [[ 0.23651224 0.41900661 0.84869417 0.46456022]
# [ 0.60771087 0.9043845 0.36603285 0.55746074]]
print("sum =",np.sum(a,axis=1))
# sum = [ 1.96877324 2.43558896]
print("min =",np.min(a,axis=0))
# min = [ 0.23651224 0.41900661 0.36603285 0.46456022]
print("max =",np.max(a,axis=1))
# max = [ 0.84869417 0.9043845 ]
```
更多Numpy的基础运算
# 构建数据,其中的 argmin() 和 argmax()两个函数分别对应着求矩阵中最小元素和最大元素的索引。相应的,在矩阵的12个元素中,最小值即2,对应索引0,最大值为13,对应索引为11。
import numpy as np
A = np.arange(2,14).reshape((3,4))
# array([[ 2, 3, 4, 5]
# [ 6, 7, 8, 9]
# [10,11,12,13]])
print(np.argmin(A)) # 0
print(np.argmax(A)) # 11
```
# 如果需要计算统计中的均值,可以利用下面的方式,将整个矩阵的均值求出来:
print(np.mean(A)) # 7.5
print(np.average(A)) # 7.5
# 仿照着前面的dot() 的使用法则,mean()函数还有另外一种写法:
print(A.mean()) # 7.5
# 求解中位数的函数:
print(A.median()) # 7.5
# 和matlab中的cumsum()累加函数类似,Numpy中也具有cumsum()函数,在cumsum()函数中:生成的每一项矩阵元素均是从原矩阵首项累加到对应项的元素之和。比如元素9,在`cumsum()`生成的矩阵中序号为3,即原矩阵中2,3,4三个元素的和。其用法如下:
print(np.cumsum(A))
# [2 5 9 14 20 27 35 44 54 65 77 90]
# 相应的有累差运算函数diff(),该函数计算的便是每一行中后一项与前一项之差。故一个3行4列矩阵通过函数计算得到的矩阵便是3行3列的矩阵:
print(np.diff(A))
# [[1 1 1]
# [1 1 1]
# [1 1 1]]
# nonzero()函数,这个函数将所有非零元素的行与列坐标分割开,重构成两个分别关于行和列的矩阵:
print(np.nonzero(A))
# (array([0,0,0,0,1,1,1,1,2,2,2,2]),array([0,1,2,3,0,1,2,3,0,1,2,3]))
# 同样的,我们可以对所有元素进行仿照列表一样的排序操作,但这里的排序函数仍然仅针对每一行进行从小到大排序操作:
# 构造数据
import numpy as np
A = np.arange(14,2, -1).reshape((3,4))
# array([[14, 13, 12, 11],
# [10, 9, 8, 7],
# [ 6, 5, 4, 3]])
print(np.sort(A))
# array([[11,12,13,14]
# [ 7, 8, 9,10]
# [ 3, 4, 5, 6]])
# 矩阵的转置有两种表示方法:
print(np.transpose(A))
print(A.T)
# array([[14,10, 6]
# [13, 9, 5]
# [12, 8, 4]
# [11, 7, 3]])
# array([[14,10, 6]
# [13, 9, 5]
# [12, 8, 4]
# [11, 7, 3]])
# 特别的,在Numpy中具有clip()函数,这个函数的格式是clip(Array,Array_min,Array_max),顾名思义,Array指的是将要被执行用的矩阵,而后面的最小值最大值则用于让函数判断矩阵中元素是否有比最小值小的或者比最大值大的元素,并将这些指定的元素转换为最小值或者最大值,例子如下:
print(A)
# array([[14,13,12,11]
# [10, 9, 8, 7]
# [ 6, 5, 4, 3]])
print(np.clip(A,5,9))
# array([[ 9, 9, 9, 9]
# [ 9, 9, 8, 7]
# [ 6, 5, 5, 5]])
四、Numpy 索引
一维索引
# 在元素列表或者数组中,我们可以用如同`a[2]`一样的表示方法,同样的,在Numpy中也有相对应的表示方法:
import numpy as np
A = np.arange(3,15)
# array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
print(A[3]) # 6
# 将矩阵转换为二维的,此时进行同样的操作:
# 实际上这时的A[2]对应的就是矩阵A中第三行(从0开始算第一行)的所有元素。
A = np.arange(3,15).reshape((3,4))
"""
array([[ 3, 4, 5, 6]
[ 7, 8, 9, 10]
[11, 12, 13, 14]])
"""
print(A[2])
# [11 12 13 14]
二维索引
# 如果你想要表示具体的单个元素,可以仿照上述的例子,此时对应的元素即`A[1][1]`,在`A`中即横纵坐标都为1,第二行第二列的元素,即8(因为计数从0开始)。
print(A[1][1]) # 8
# 同样的还有其他的表示方法:
print(A[1, 1]) # 8
# 在Python的 list 中,我们可以利用`:`对一定范围内的元素进行切片操作,在Numpy中我们依然可以给出相应的方法:
print(A[1, 1:3]) # [8 9]
#这一表示形式即针对第二行中第2到第4列元素进行切片输出(不包含第4列)。
# 利用for函数进行打印:
for row in A:
print(row)
"""
[ 3, 4, 5, 6]
[ 7, 8, 9, 10]
[11, 12, 13, 14]
"""
#此时它会逐行进行打印操作。如果想进行逐列打印,就需要稍稍变化一下:
for column in A.T:
print(column)
"""
[ 3, 7, 11]
[ 4, 8, 12]
[ 5, 9, 13]
[ 6, 10, 14]
"""
#上述表示方法即对A进行转置,再将得到的矩阵逐行输出即可得到原矩阵的逐列输出。
# 关于迭代输出的问题:
# 下面代码中的`flatten`是一个展开性质的函数,将多维的矩阵进行展开成1行的数列。而`flat`是一个迭代器,本身是一个`object`属性。
import numpy as np
A = np.arange(3,15).reshape((3,4))
print(A.flatten())
# array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
for item in A.flat:
print(item)
# 3
# 4
……
# 14
五、Numpy array 合并
# array的上下合并 `np.vstack()`
import numpy as np
A = np.array([1,1,1])
B = np.array([2,2,2])
print(np.vstack((A,B))) # vertical stack
"""
[[1,1,1]
[2,2,2]]
"""
#对组合而成的矩阵进行属性探究
C = np.vstack((A,B))
print(A.shape,C.shape)
# (3,) (2,3)
#利用shape函数可以让我们很容易地知道A和C的属性,从打印出的结果来看:
#A仅仅是一个拥有3项元素的数组(数列),而合并后得到的C是一个2行3列的矩阵。
# array的左右合并 `np.hstack()`
D = np.hstack((A,B)) # horizontal stack
print(D)
# [1,1,1,2,2,2]
print(A.shape,D.shape)
# (3,) (6,)
#通过打印出的结果可以看出:D本身来源于A,B两个数列的左右合并,而且新生成的D本身也是一个含有6项元素的序列。
# `np.newaxis()` 函数的使用
# 如果面对如同前文所述的A序列, 转置操作便很有可能无法对其进行转置(因为A并不是矩阵的属性),此时就需要我们借助其他的函数操作进行转置:
print(A[np.newaxis,:])
# [[1 1 1]]
print(A[np.newaxis,:].shape)
# (1,3)
print(A[:,np.newaxis])
"""
[[1]
[1]
[1]]
"""
print(A[:,np.newaxis].shape)
# (3,1)
#此时我们便将具有3个元素的array转换为了1行3列以及3行1列的矩阵了。
# 结合着上面的知识,我们把它综合起来:
```python
import numpy as np
A = np.array([1,1,1])[:,np.newaxis]
B = np.array([2,2,2])[:,np.newaxis]
C = np.vstack((A,B)) # vertical stack
D = np.hstack((A,B)) # horizontal stack
print(D)
"""
[[1 2]
[1 2]
[1 2]]
"""
print(A.shape,D.shape)
# (3,1) (3,2)
# `np.concatenate()` 函数的使用
# 当你的合并操作需要针对多个矩阵或序列时,借助`concatenate`函数可能会让你使用起来比前述的函数更加方便:
C = np.concatenate((A,B,B,A),axis=0)
print(C)
"""
array([[1],
[1],
[1],
[2],
[2],
[2],
[2],
[2],
[2],
[1],
[1],
[1]])
"""
D = np.concatenate((A,B,B,A),axis=1)
print(D)
"""
array([[1, 2, 2, 1],
[1, 2, 2, 1],
[1, 2, 2, 1]])
"""
# axis参数很好的控制了矩阵的纵向或是横向打印,相比较vstack和hstack函数显得更加方便。
六、 Numpy array 分割
# 创建数据
import numpy as np
A = np.arange(12).reshape((3, 4))
print(A)
"""
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
"""
# 纵向分割
print(np.split(A, 2, axis=1))
"""
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
"""
# 横向分割
print(np.split(A, 3, axis=0))
# [array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]])]
# 错误的分割
print(np.split(A, 3, axis=1))
# ValueError: array split does not result in an equal division
# 范例的Array只有4列,只能等量对分,因此输入以上程序代码后Python就会报错。
# 不等量的分割(在机器学习时经常会需要将数据做不等量的分割,因此解决办法为`np.array_split()`)
print(np.array_split(A, 3, axis=1))
"""
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2],
[ 6],
[10]]), array([[ 3],
[ 7],
[11]])]
"""
#成功将Array不等量分割!
# 其他的分割方式 (在Numpy里还有`np.vsplit()`与横`np.hsplit()`方式可用。)
print(np.vsplit(A, 3)) #等于 print(np.split(A, 3, axis=0))
# [array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]])]
print(np.hsplit(A, 2)) #等于 print(np.split(A, 2, axis=1))
"""
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
"""
七、Numpy copy & deep copy
# = 的赋值方式会带有关联性
# 首先 `import numpy` 并建立变量, 给变量赋值。
import numpy as np
a = np.arange(4)
# array([0, 1, 2, 3])
b = a
c = a
d = b
# 改变a的第一个值,b、c、d的第一个值也会同时改变。
a[0] = 11
print(a)
# array([11, 1, 2, 3])
# 确认b、c、d是否与a相同。
b is a # True
c is a # True
d is a # True
# 同样更改d的值,a、b、c也会改变。
d[1:3] = [22, 33] # array([11, 22, 33, 3])
print(a) # array([11, 22, 33, 3])
print(b) # array([11, 22, 33, 3])
print(c) # array([11, 22, 33, 3])
# copy() 的赋值方式没有关联性
b = a.copy() # 非deep copy
print(b) # array([11, 22, 33, 3])
a[3] = 44
print(a) # array([11, 22, 33, 44])
print(b) # array([11, 22, 33, 3])
# 此时a与b已经没有关联。