用python进行列联表卡方检验

转自:https://zhuanlan.zhihu.com/p/42470566

前天在看书的时候第一次看到了列联表卡方检验,觉得这个东西不难又相对容易实现,刚好知乎上有个老哥的文章是用R来实现卡方检验,于是借用他的数据,我在spyder上面实现了。

这是一份手游数据,里面是某手游2013年8-9月的用户登录数据以及用户数据库数据。这是为了查看到底是什么因素使得8-9月的登录次数骤减。为了看到底是什么因素会影响,首先会想到方差分析、相关性矩阵,还有卡方检验。

首先卡方检验是针对自变量和因变量都是分类数据,也就是说带有属性的数据;而单因素方差分析是自变量是分类数据,因变量是连续型的数据还有一点:方差分析是参数检验,而卡方检验是属于非参数检验。

到底列联表的卡方怎么做呢?

卡方检验是用途非常广的一种 假设检验方法,它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的 相关分析等。
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合;卡方值越小,偏差越小,越趋于符合,若两个值完全相等时,卡方值就为0,表明理论值完全符合。注意:卡方检验针对分类变量

当然是要进行假设检验啦:

H_0:两个因子之间并不存在关系 \\H_1:两因子存在关系

更多Python视频、源码、资料加群683380553免费获取

根据度娘的图:

1、括号里面是根据观测值的概率来推算出来的理论值,或者叫期望值。

2、最下面和最右面是分别在不同分类数据下的求和,右边那列的和下边的和怎么都等于200

3、概率和理论值怎么算呢:

P(化妆) = \frac{110}{200} \space P(不化妆)=\frac{90}{200}\\ P(男) = \frac{100}{200} \space P(女) = \frac{100}{200}\\ 男化妆 = \frac{100}{200}*\frac{110}{200}*200 = 55\\ 女化妆 = \frac{100}{200}*\frac{110}{200}*200 = 55\\ 男不化妆 = \frac{100}{200}*\frac{90}{200}*200 = 45\\ 女不化妆 = \frac{100}{200}*\frac{90}{200}*200 = 45\\

 

4、我们把理论值都直接放进去表格里面,卡方的公式: \chi^2 = \sum(\frac{(A-T)^2}{T}) 其中A是实际值,T是理论值。

5、最后根据得出的卡方值查表便可求得结果。

回归本题:

在spyder里面实现

import os 
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
plt.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
os.chdir('./新建文件夹')
user_database = pd.read_csv('./user_database.csv',encoding='utf-8',sep=',')
user_login = pd.read_csv('./user_login.csv',encoding='utf-8',sep=',')
#是否有空值
udba_na = np.sum(user_database.isnull().sum())
ulg_na = np.sum(user_login.isnull().sum())
print(udba_na,'-----\n-----',ulg_na)
if udba_na == 0 and ulg_na == 0:
    print('进行下一步')
else:
    print('再检查')

以上是 常规操作

#merge    
new_df = pd.merge(user_login,user_database,how='left',on='user_id')
new_df.drop(['app_name_x','app_name_y'],axis=1,inplace=True)
new_df.log_date = pd.to_datetime(new_df.log_date)
#merge成功之后,进行探索性分析
#8-9月之间登陆次数是否有异常
logdf = new_df.groupby(['log_date']).count()['user_id']
logdf.plot(figsize=(20,10),legend=True,fontsize=20,
           label = '用户数',linewidth =2,colormap = 'BrBG_r',marker='o',
           alpha=0.6,linestyle='--',grid=True)
plt.legend(fontsize=20)
plt.title('8-9月登陆用户数趋势图',fontsize=20)
plt.grid(which='y',linestyle='--',color='grey',alpha=0.8)
#明显整体趋势走弱,最大断崖式下跌9月10-11-12日

这里首先进行merge,因为是两个文件,采用的是left join的形式,和SQL一样。然后根据图像进行分析。

整体趋势向下走,在9月初一下子降得有点严重。

进一步分析为什么会这样

#8-9月月活跃玩家整体下降
new_df.index = new_df.log_date
new_df['log_month'] = new_df.index.month

这里先把月份提取出来,因为做卡方检验需要分类数据

这里我写了3个自定义函数,是为了输出报告

#看哪几个因素有影响
#主因素 月份 其他因素:年龄段,性别,设备
#自定义函数,做卡方检验
def colu(df,col):
    uni = df[col].unique().tolist()
    return uni
def observe(df,subcol,maincol):
    d = []
    lst1 = colu(df,subcol)
    lst2 = colu(df,maincol)
    for l in lst1:
        for ls in lst2:
            b = len(df[(df[subcol] == l)&(df[maincol]==ls)])
            d.append(b)
    return d
def split_array(df,subcol,maincol):
    result_lst = []
    lst = observe(df,subcol,maincol)
    for j in range(0,len(lst),len(colu(df,maincol))):
        result = lst[j:j+len(colu(df,maincol))]
        result_lst.append(result)
    result_lst = np.array(result_lst)
    return result_lst.T
def chi(array):
    #计算理论值
    #main = np.sum(array,axis=1)
    #sub = np.sum(array,axis=0)
    sum_ = np.sum(np.sum(gender_month))
    #理论值:
    #expectation_value = sum_*(main/np.sum(main))*(sub/np.sum(sub))
    #expectation_value1 = sum_*(1-main/np.sum(main))*(sub/np.sum(sub))
    if sum_ > 40:
        print('样本量大于40')
        chi,p,v,exp = stats.chi2_contingency(array,correction=False)
    else:
        print('样本量小于40')
        chi,p,v,exp = stats.chi2_contingency(array,correction=True)
    print ('''
====================================================
报告
χ2值:{}
p值:{}
自由度:{}
理论值:
{}
====================================================
      '''.format(chi,p,v,exp))
    if p > 0.05:
        print('不拒绝原假设,无充分证据表明两个因素之间存在关系,即可认为该因素不影响登陆次数')
    else:
        if p < 0.05:
            print('显著性水平α=0.05下,拒绝原假设,充分相关,建议作图分析做进一步判断到底是因子里面哪个因素起作用')
        elif p < 0.01:
            print('显著性水平α=0.01下,拒绝原假设,显著相关,建议作图详细分析')
    return (chi,p,v,exp)

总的思路就是,先把属性提取出来,然后循环遍历把对应的数据总量算出来,最后转换为numpy.array格式,根据scipy的stats里面的chi2_contingency方法做相关性检验,里面有个参数叫correction,是连续性修正,默认True,这是因为理论值全部小于5,且样本量小于40或者样本量大于40有一格或几格的理论值小于5的时候就要用这个修正。

#性别和月份检测:
#返回的是转置后的二维数组,index分别是月份,columns名是M,F
gender_month  = split_array(new_df,'gender','log_month')
print('--------------------性别和月份------------------------\n')
chi(gender_month)
print('------------------------------------------------------\n')
#年龄段和月份检测:
generation_month = split_array(new_df,'generation','log_month')
print('--------------------年龄和月份------------------------\n')
chi(generation_month)
print('------------------------------------------------------\n')
#设备和月份检测:
device_month = split_array(new_df,'device_type','log_month')
print('--------------------设备和月份------------------------\n')
chi(device_month)
print('------------------------------------------------------\n')

返回的结果

--------------------性别和月份------------------------

样本量大于40

====================================================
报告
χ2值:2.009573852892115
p值:0.1563092191352709
自由度:1
理论值:
[[46987.45685607 47197.54314393]
 [38002.54314393 38172.45685607]]
====================================================
      
不拒绝原假设,无充分证据表明两个因素之间存在关系,即可认为该因素不影响登陆次数
------------------------------------------------------

--------------------年龄和月份------------------------

样本量大于40

====================================================
报告
χ2值:17.246958670810887
p值:0.0017306236244977753
自由度:4
理论值:
[[33669.09192299  4789.96736323 27807.68449166  9023.75892228
  18894.49729984]
 [27230.90807701  3874.03263677 22490.31550834  7298.24107772
  15281.50270016]]
====================================================
      
显著性水平α=0.05下,拒绝原假设,充分相关,建议作图分析做进一步判断到底是因子里面哪个因素起作用
------------------------------------------------------

--------------------设备和月份------------------------

样本量大于40

====================================================
报告
χ2值:2042.142383870325
p值:0.0
自由度:1
理论值:
[[51824.41720474 42360.58279526]
 [41914.58279526 34260.41720474]]
====================================================
      
显著性水平α=0.05下,拒绝原假设,充分相关,建议作图分析做进一步判断到底是因子里面哪个因素起作用
------------------------------------------------------

这里两组因子都返回了p值在显著性水平0.05下小于0.05

因此进一步查看相关数据,这里是用到了pandas的交叉表,当然用pivottable也就是透视表也可以。

#研究年龄段是否真的影响
#Python学习交流群:548377875
age_df=pd.crosstab(index=new_df.log_month,
                   columns=new_df.generation,
                   values=new_df.user_id,aggfunc='count')
print(age_df)

返回

generation     10     20     30    40    50
log_month                                  
8           18785  33671  28072  8828  4829
9           15391  27229  22226  7494  3835

初步看20代、30代的玩家是该手游的主力玩家,这时候要比较8月和9月各个年龄段之间的差值以及每个月内的占比,也就是比较组间差距和组内 差距

#8-9月年龄段同比
Aug_age_df = age_df.loc[8]
Sep_age_df = age_df.loc[9]
diff_age_df = (Sep_age_df - Aug_age_df)/Aug_age_df
print(diff_age_df,'\n40-49年龄段同比下降幅度15%,其他年龄段同比下降20%左右')
print(Aug_age_df/Aug_age_df.sum(),'\n',Sep_age_df/Sep_age_df.sum())
#看整体
age_df.plot(figsize=(20,10),kind='bar',rot=0,fontsize=25,stacked=True) 
plt.legend(fontsize=20)
print('20、30代下降得比较严重')

返回

generation
10   -0.180676
20   -0.191322
30   -0.208250
40   -0.151110
50   -0.205840
dtype: float64 
40-49年龄段同比下降幅度15%,其他年龄段同比下降20%左右
generation
10    0.199448
20    0.357499
30    0.298052
40    0.093730
50    0.051271
Name: 8, dtype: float64 
 generation
10    0.202048
20    0.357453
30    0.291776
40    0.098379
50    0.050345
Name: 9, dtype: float64
20、30代下降得比较严重

单单这样比较起来,每个年龄段在每个月内的占比情况其实大同小异,再看组间差距,可以发现除了40代以外,其他都是维持在20%左右的降幅,作为一个异常值,可以去尝试把40代的数据挑出来再做检验

#把40代剔除
newdf = new_df[new_df.generation != 40]
generation_month2 = split_array(newdf,'generation','log_month')
print('--------------------年龄和月份(剔除40代后)------------------------\n')
chi(generation_month2)

返回报告

--------------------年龄和月份(剔除40代后)------------------------

样本量大于40

====================================================
报告
χ2值:6.74676953726528
p值:0.08042237855065465
自由度:3
理论值:
[[33746.48658123  4800.97799244 27871.6056168  18937.92980953]
 [27153.51341877  3863.02200756 22426.3943832  15238.07019047]]
====================================================
      
不拒绝原假设,无充分证据表明两个因素之间存在关系,即可认为该因素不影响登陆次数

p值 大于0.05,个人认为虽然是大于0.05,但是多少还是会存在年龄段的因素,相对于下面这个因素来说影响太弱。

#可以认为年龄段对于登陆次数是有影响,40代剔除后本对整体不影响,但卡方检验p值提升,因此年龄段也需要关注
device_type_df =pd.crosstab(index=new_df.log_month,
                   columns=new_df.device_type,
                   values=new_df.user_id,aggfunc='count')
print(device_type_df)

返回

device_type  Android    iOS
log_month                  
8              46974  47211
9              29647  46528

可以看到安卓突然崩塌式下坠,而IOS基本保持应有的水平,似乎答案已经出来了。

#很直观,明显9月安卓突然下降,设备上面很可能有问题。
logdf1 = new_df[new_df['device_type']=='iOS'].groupby(['log_date']).count()['user_id']
logdf2 = new_df[new_df['device_type']=='Android'].groupby(['log_date']).count()['user_id']
f,axes = plt.subplots(1,1)
logdf1.plot(figsize=(20,10),legend=True,fontsize=20,
           label = 'IOS用户数',linewidth =2,colormap = 'BrBG_r',marker='o',
           alpha=0.6,linestyle='--',grid=True)
logdf2.plot(figsize=(20,10),legend=True,fontsize=20,
           label = '安卓用户数',linewidth =2,colormap = 'jet_r',marker='*',
           alpha=0.6,linestyle='--',grid=True)
plt.legend(fontsize=20)
plt.title('8-9月登陆用户数趋势图',fontsize=20)
plt.grid(which='y',linestyle='--',color='grey',alpha=0.8) 
plt.show()  
#根据图像,明显安卓用户断崖崩塌,假设:存在安卓系统优化问题

初步判断,安卓用户存在优化问题。

以上就是用 python做卡方检验。也可以考虑用相关矩阵

n = new_df
n.drop('log_date',axis=1,inplace=True)
n['device_type'] = n['device_type'].map({'iOS':1,'Android':0})
n['gender'] = n['gender'].map({'F':0,'M':1})
corr = n.corr()
print(corr)
#相关性矩阵,可以看到设备类型和登陆月份之间的相关性是里面最强的,其余基本都是无相关关系

              user_id    gender  generation  device_type  log_month
user_id      1.000000 -0.000472    0.012713     0.037740   0.184411
gender      -0.000472  1.000000   -0.009061     0.014727   0.003435
generation   0.012713 -0.009061    1.000000    -0.011449  -0.001097
device_type  0.037740  0.014727   -0.011449     1.000000   0.109486
log_month    0.184411  0.003435   -0.001097     0.109486   1.000000
  • 9
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值