在递增数组中寻找 和为sum 的两个数

题目:输入一个递增排序的数组和一个数字S,在数组中查找两个数,是的他们的和正好是S,如果有多对数字的和等于S,输出两个数的乘积最小的。

思路一:双循环遍历,并用一个变量记录符合条件两数的积,最后输出积最小的两个数。

时间复杂度 O(n²) 。

#define vi vector<int>
#define MAX_INT 99999999
class Solution {
public:
    vi FindNumbersWithSum(vi array,int sum) {
        int length=array.size(),product=MAX_INT,flag=0;
        vi res(2),res0;
        for(int i=0;i<length;i++){
            for(int j=i+1;j<length;j++){
                int a=array[i],b=array[j];
                if(a+b==sum && a*b<product){
                    res[0]=a;
                    res[1]=b;
                    product=a*b;
                    flag++;
                }
            }
        }
        if(!flag) return res0;
        return res;
    }
};

测试:输入数组长度为2000时,用时900+ms.

这是一种效率极低的方法,因为该方法没有用到输入数组是递增的这一条件,导致做了很多没有用的搜索。另外,任何两个sum和相同的整数,它们的积的大小是有规律的。

思路二:
数列满足递增,设两个头尾两个指针i和j,
若ai + aj == sum,就是答案(相差越远乘积越小)
若ai + aj > sum,aj肯定不是答案之一(前面已得出 i 前面的数已是不可能),j -= 1
若ai + aj < sum,ai肯定不是答案之一(前面已得出 j 后面的数已是不可能),i += 1
时间复杂度 O(n)
#define vi vector<int>
class Solution {
public:
    vi FindNumbersWithSum(vi array,int sum) {
        int i=0,j=array.size()-1,a,b;
        vi res;
        while(i<j){
            a=array[i];
            b=array[j];
            if(a+b==sum){
                res.push_back(a);
                res.push_back(b);
                break;
            }
            else if(a+b<sum) ++i;
            else --j;
        }
        return res;
    }
};

测试:输入数组长度为2000时,用时稳定在1ms左右. 

另外,本算法还利用了很重要的一点:如果有很多组整数它们的和相同,那么相互距离越远的整数组它们的积越小。

即假设a<b,则a*b<(a+1)*(b-1)(条件是b-1>a+1)

证明:    ∵b-1>a+1, ∴b-a-1>1.

                ∴ (a+1)*(b-1)-a*b=b-a-1>1>0; 证毕。

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页