Transformer
文章平均质量分 69
栗子菜菜
研究生已毕业,职场菜鸟一枚,记录学习笔记,共同学习
展开
-
【论文翻译】SETR:Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformer
SETR摘要介绍相关工作语义分割Transformer模型设计FCN-based semantic segmentationSegmentation transformers (SETR)Image-sequence摘要大多数语义分割方法采用了一个带有编码器-解码器结构的全卷积网络(FCN)。编码器逐渐降低空间分辨率,并通过更大的感受野学习更抽象/语义的视觉概念。由于上下文建模对于分割至关重要,最近的努力集中在通过扩张/压缩卷积或引入注意模块来增加感受野。但是,基于编码器-解码器的FCN架构保持不变。在原创 2021-08-09 10:03:18 · 678 阅读 · 0 评论 -
【论文翻译】VIT:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
VIT摘要介绍相关工作模型VISION TRANSFORMER (VIT)微调和高分辨率实验结论摘要虽然Transformer架构在自然语言处理任务中已经成为事实标准,但是它在计算机视觉领域的应用仍然受限。在视觉领域,注意力要么和卷积网络结合使用,要么替换卷积网络中的某些部分,同时保持整体结构不变。本文表明对CNNs的依赖不是必要的,纯转换器(pure transformer)直接应用于图像块(image patches)序列在图像分类任务中能发挥很好的作用。当对大量数据进行预训练并把它转移到多个中型或原创 2021-08-09 09:54:15 · 1588 阅读 · 2 评论 -
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers
SETR论文手写笔记,容易丢,先放这哈哈哈原创 2021-07-30 16:38:40 · 182 阅读 · 0 评论